Wat is een stroominfarct?

Een stroominfarct is een verschil in vraag en aanbod aan elektriciteit in het elektriciteitsnet waarbij de vraag het aanbod zo sterk overstijgt dat het elektriciteitsnet geheel of gedeeltelijk wordt uitgeschakeld. De term stoominfarct wordt onder andere door de Technische Universiteit van Delft gebruikt om de ernst en gevolgen van een groot tekort aan elektrische stroom te illustreren.

Vraag en aanbod elektriciteit
Een stroominfarct is een realistisch probleem wanneer het aanbod aan elektrische stroom onzekerder wordt en de vraag naar elektrische stroom toeneemt. Dat is een ontwikkeling die op dit moment gaande is. Vanwege de energietransitie zijn veel installaties en voertuigen meer elektriciteit gaan verbruiken in plaats van fossiele brandstoffen zoals aardgas, steenkool maar ook benzine en diesel.

Elektrische energie

Elektrische stroom kan men op verschillende manieren verkrijgen. De steenkolencentrales en aardgascentrales worden beschouwd als niet duurzaam omdat deze draaien op fossiele brandstoffen. Wel is de elektrische stroom die in deze centrales wordt opgewekt constant en controleerbaar. Men kan immers berekenen hoeveel steenkool men nodig heeft om in een bepaalde elektrische energiebehoefte te voorzien.

Weersafhankelijk

Lastiger wordt het wanneer men de elektrische energiebehoefte laat afhangen van weersomstandigheden. Dit is het geval bij energie-installaties die draaien op windkracht zoals windturbines of op zonlicht zoals zonnepanelen. Deze installaties zijn afhankelijk van weersomstandigheden die kunnen veranderen. Als er weinig wind staat en de zon onvoldoende kracht heeft kan er een tekort aan elektrische stroom ontstaan. Er wordt dan minder elektriciteit uit duurzame bronnen opgewekt waardoor er een stroominfarct kan ontstaan. De Technische Universiteit van Delft (TU Delft) zoekt naar oplossingen voor deze situatie.

Wat is DALI of een DALI systeem in de elektriciteit?

DALI is een afkorting die voluit als Digital Addressable Lighting Interface wordt geschreven en is een internationale standaard waarin vastgelegd is hoe de communicatie dient plaats te vinden tussen de regel- en stuursystemen en de componenten in een verlichtingsinstallatie. In feite is DALI en systeem voor het intelligent beheren van verlichting en zorgt het voor een besparing in het verbruik van elektriciteit in het lichtnet. Omdat DALI een internationale standaard is kunnen de componenten van verschillende fabrikanten in één installatie worden gebruikt en uitgewisseld zonder dat de werking van de installatie daarmee bemoeilijkt wordt.

DALI laat verlichting met elkaar communiceren

Elk systeem dat gebaseerd is op DALI bestaat uit een controller en maximaal 64 verlichtingscomponenten. Dit kunnen verschillende soorten verlichtingscomponenten zijn met verschillende kleuren en in verschillende vertrekken van een woning of ander gebouw. Ook de verlichtingssterkte kan worden bepaald. DALI kan worden beschouwd als een ideale oplossing voor het realiseren van een communicatie tussen diverse verlichtingsarmaturen in een installatie. De communicatie kan vanuit verschillende invalshoeken worden benaderd. Zo kan men bijvoorbeeld DALI gebruiken om energie te besparen maar ook voor comfortabele verlichting of bedieningsgemak. Er wordt hierbij gebruik gemaakt van een voorschakelapparaat.

Hoe werkt DALI
De communicatie in een DALI systeem vind plaats doormiddel van zogenaamde adressen. Elk component krijg een uniek adres. Doormiddel van de controller worden opdrachten gestuurd naar deze adressen. In feite is een DALI systeem een intern tweeweg communicatiesysteem voor verlichting binnen een woning of ander gebouw. Dit wordt ook wel een bi-directionele communicatie genoemd. er wordt als ware een opdracht gegeven aan het adres van een bepaald component. Deze opdracht of commando kan bijvoorbeeld aan, uit of dimmen zijn. Daarnaast is er een terugkoppeling die ook wel feedback wordt genoemd. De feedback van het component kan bijvoorbeeld de status van het component zijn. Deze status is dan bijvoorbeeld of het component aan, uit of een bepaald percentage gedimd is. Ook kan de feedback bestaan uit informatie over defecten van het bepaalde component. Verder kan er feedback worden gegeven over het aantal branduren en energieverbruik.

DALI is dimbaar van 0 tot 100%. Op die manier kan men doormiddel van DALI niet alleen verlichting aan en uit doen maar ook de verschillende verlichtingscomponenten dimmen. Het is de bedoeling dat men DALI ook gebruikt om alleen die ruimten te verlichten die daadwerkelijk worden gebruikt. Ruimten die niet worden gebruikt worden niet verlicht zodat er bespaard wordt op elektriciteit.

DALI of gebouwenbeheersysteem
DALI is een intelligent systeem voor verlichting maar geen gebouwbeheersysteem. Men kan DALI beschouwen als subsysteem. Ten opzichte van een gebouwenbeheersysteem is DALI eenvoudiger en minder kostbaar. Een gebouwenbeheersysteem bevat veel meer toepassingen en programmeermogelijkheden. Zo kan een gebouwenbeheersysteem ook worden gebruikt voor bijvoorbeeld verwarming, beveiliging, zonneschermen en andere toepassingen. DALI is specifiek ontwikkeld voor communicatie tussen componenten met betrekking tot de verlichting. Daardoor is DALI eenvoudiger en minder duur in aanschaf. Verder is DALI omdat het eenvoudiger is ook minder gevoelig voor storing. De elektrische installatie wordt eenvoudiger en flexibeler voor de gebruiker. Bovendien kan de elektrische installatie op verlichtingsgebied beter op de gebruiker worden aangepast of deze nu kiest voor energiebesparing, comfort of flexibiliteit en gebruiksgemak.

Wat is getijdenstroomgenerator of een tidal stream generator?

Een getijden stroomgenerator is een machine die wordt gebruikt om energie op te wekken uit bewegende watermassa’s waaronder de waterverplaatsing tussen eb en vloed. Een getijdenstroomgenerator is in feite een soort propeller die in beweging gebracht wordt door de druk van stromend water. Dit stromend water hoeft overigens niet beslist door eb en vloed te worden veroorzaakt wat de naam tidal energy converter (TEC) eigenlijk doet vermoeden. In feite kan deze stroomgenerator ook worden geplaatst in een rivier of andere situatie waar veel watermassa in beweging is. Hieronder is in een aantal alinea’s meer informatie weergegeven over getijdenenergie en de manier waarop deze energie kan worden opgewekt.

Getijdenstroom of getijdenenergie
De waterkrachtcentrales die worden gebruikt om energie op te wekken uit stromend water vanuit stuwmeren zijn al een oude beproefde methode om elektrische energie op te wekken uit stromend water. Het opwekken van elektrische uit getijden oftewel eb en vloed is echter vrij nieuw. In het Engels wordt dit ook wel tidal stream genoemd wat in het Nederlands vertaald kan worden met getijdenstroom of getijdenenergie. Kenmerkend voor deze manier van duurzame energie opwekken is dat de waterdruk iets in beweging brengt. Waterdruk is kracht en kracht is energie. Men kan energie omzetten in andere vormen van energie als men daarvoor de juiste werktuigen gebruikt. Een bekend werktuig hiervoor is de turbine. Er zijn verschillende soorten turbines zoals de stoomturbine die in kolencentrales aanwezig is en de windturbines die in de praktijk vaak windmolens worden genoemd.

Getijdenstroom opwekken
In feite is het opwekken van getijdenstroom vergelijkbaar met het opwekken van windenergie. Bij het opwekken van getijdenstroom wordt ook gebruik gemaakt van propellers en rotorbladen die in beweging worden gebracht. Alleen wordt deze beweging door waterdruk veroorzaakt in plaats van door windkracht. Getijdenstroomgenerators of getijdenstroomturbines kunnen net als windmolens op de bodem van de zee worden geplaatst alleen komende propellers dan als het goed is niet boven het water uit terwijl windmolens juist wel in de wind worden geplaatst boven het wateroppervlak. Een andere vorm is het bevestigen van een turbine met propeller aan een kabel. Een voorbeeld hiervan is een TidalKite.

TidalKite

Als je getijdenenergie opwekt met behulp van een turbine aan een kabel heb je als het ware een getijdenvlieger. Deze vlieger gaat met de stroom van eb en vloed mee en kan daardoor bij opgaand en afgaand water stroom opwekken. Omdat de getijdenvlieger aan een kabel vast zit zal deze niet boven het water uitkomen en altijd onder het watervlak blijven als de kabel op de juiste plaats verankerd is aan de zeebodem. Een voorbeeld van dit principe is de TidalKite. Deze getijdenvlieger wordt getest vanaf medio 2018 in het water van de Friese Waddenzee. Vanaf de TidalKite loopt er een stroomkabel naar de vaste wal waardoor elektrische stroom naar de wal kan worden getransporteerd. Op die manier kan men aan de wal gebruik maken van de elektrische energie die door de TidalKite is opgewekt.

Getijdenenergie als alternatief voor windenergie
Energie die opgewekt wordt uit eb en vloed zou in de toekomst een groter aandeel kunnen krijgen in de hernieuwbare energievoorziening van Nederland. Een belangrijk voordeel van getijdenstroom en getijdenenergie is dat deze stroming altijd aanwezig is waardoor er sprake is van een vrij constante energieopbrengst. Een ander voordeel is het feit dat deze energievoorziening in tegenstelling tot windturbines vrijwel geheel aan het oog onttrokken wordt waardoor er geen sprake is van horizonvervuiling. Deze steekhoudende argumenten en voordelen kunnen er voor zorgen dat er in de toekomst steeds vaker getijdenstroomgeneratoren worden geplaatst in de zeeën rondom ons.

Wat is een energieverbruiksmanager?

Een energieverbruiksmanager is een apparaat of een applicatie (app) waarmee men op een display of digitaal op een smartphone, tablet of pc inzicht kan krijgen in het energieverbruik van een gebouw en de daarin aanwezige energieverbruikende apparaten en installaties. Met een energieverbruiksmanager kan men informatie inwinnen over het energieverbruik. Dit systeem is meestal gekoppeld aan een slimme meter of staat hiermee in contact. De meetgegevens van de slimme meter worden in de energieverbruiksmanager gevisualiseerd aan de gebruiker. De meterstanden die door de slimme meter worden geregistreerd worden vertaald in grafieken en tabellen. Dat maakt het voor mensen mogelijk om inzicht te krijgen in de momenten waarop veel of juist weinig energie wordt verbruikt in een bepaald gebouw.

Energieverbruik managen
Energieverbruiksmanagers zijn er in verschillende soorten. Zo zijn er fysieke kastjes maar er zijn ook digitale energieverbruiksmanagers zoals de eerder genoemde app of de programma’s die men kan bekijken op een tablet of op een pc. De programma’s kunnen heel uitgebreid zijn. Zo kan men in tabellen en grafieken een duidelijk beeld krijgen van het energieverbruik. Dit energieverbruik kan men dikwijls ook vergelijken met verschillende periodes die zijn geweest. Men kan het energieverbruik per dag inzichtelijk krijgen. Sommige dagen maakt men meer gebruik van bepaalde energieverslindende apparaten en dat heeft een effect op de meetresultaten die worden gemeten door de slimme meter. Deze meetgegevens worden vervolgens weer doorgestuurd naar de energieverbruiksmanager.

Op die manier kan men meer inzicht krijgen in het energieverbruik en kan met het energieverbruik ook gaan managen. Men kan dan namelijk bepalen welke apparaten veel of weinig energie verbruiken. Indien mogelijk kan men de installaties en apparaten die veel energie verbruiken gaan vervangen voor energiezuinige varianten. Op die manier kan men een woning meer klimaatneutraal of CO2 neutraal maken en bovendien besparen op de energielasten.

Slimme meter of energieverbruiksmanager?
Uit de alinea’s hiervoor komt al een beetje naar voren dat een slimme meter en een energieverbruiksmanager twee verschillende apparaten of systemen zijn. Dat is in de praktijk ook zo. Een slimme meter is altijd een fysiek meetinstrument dat dikwijls in de meterkast is geplaatst. Een slimme meter meet het gasverbruik en het elektriciteitsverbruik. Deze meetgegevens zijn in principe voldoende om aan een energieleverancier door te geven. Een slimme meter wordt ook gebruikt om te meten hoeveel energie wordt teruggeleverd op het elektriciteitsnet.

Alleen meetgegevens maken geen tendens inzichtelijk met betrekking tot het energieverbruik. Men kan dus met een slimme meter niet goed inzichtelijk krijgen in welke periode pieken en dalen in het energieverbruik zijn gemeten en welke ontwikkelingen hierin zijn geweest. Dergelijke ontwikkelingen kan men wel inzichtelijk krijgen met een energieverbruiksmanager. Een energieverbruiksmanager staat wel in contact met de slimme meter. Dat is noodzakelijk want de energieverbruiksmanager meet zelf het energieverbruik niet. Het apparaat of de app wordt alleen gebruikt voor het inzichtelijk maken van gegevens.

Wat is een slimme meter?

Een slimme meter is een digitale energiemeter waarmee kan worden bijgehouden hoeveel elektrische stroom of gas is verbruikt. De slimme meter is daardoor een nieuwe soort gasmeter en elektriciteitsmeter in één. Slimme meters zijn geschikt voor het registreren van een zogenaamd dubbeltarief. Daarnaast is een slimme meter ook uitgerust met speciale technologie waardoor deze meterstanden op een afstand kan doorsturen. Deze meters worden ook gebruikt om bij te houden hoeveel elektrische energie wordt terug geleverd op het energienet. Deze terug levering van elektrische energie vindt plaats bij woningen met zonnepanelen of andere systemen waarmee elektrische energie kan worden opgewekt.

Slimme meter is niet slim
Een slimme meter is niet slim in de letterlijke zin. Dit houdt in dat deze meters niet voorzien zijn van hoogwaardige kunstmatige intelligentie. In plaats daarvan is een slimme meter meer een meetinstrument voor de energiesector. Slimme meters zijn echter wel uitgerust met een geheugen waarmee ze het energieverbruik van een gebouw digitaal kunnen opslaan. Dit geheugen is geplaatst in de elektriciteitsmeter. In deze meter worden de elektriciteitsmeterstanden én gasmetersstanden opgeslagen. Dit betekent dat de gasmeter is verbonden met de elektriciteitsmeter.

Naast deze mogelijkheid om gegevens op te slaan is deze energiemeter ook een communicatiesysteem omdat hiermee de meterstanden automatisch naar een energieleverancier kunnen worden gestuurd. Woningeigenaren kunnen echter ook zelf hun energieverbruik doormiddel van een slimme meter in kaart brengen. Daarvoor moet men echter wel een zogenaamde slimme thermostaat met display hebben, een energieverbruiksmanager of een speciale energieverbruik-app.

Dubbeltarief
Zoals hiervoor genoemd kunnen slimme meters worden gebruikt voor de registratie van een enkeltarief en een dubbeltarief. Bij een dubbeltarief is er sprake van een piek en een dal in de tariefopname. Dit is meestal gekoppeld aan een lager tarief gedurende de nacht en een hoger tarief gedurende de dag. Het wordt ook wel een hoog-laag tarief genoemd. De energieleverancier brengt dan twee verschillende tarieven in rekening bij de energieafnemer. Een slimme meter maakt deze gegevens inzichtelijk voor de energiegebruiker en is daardoor een interessant meetinstrument.

Energie terugleveren
Het terugleveren van energie op het energienet wordt een steeds belangrijker onderwerp in de energiesector. Er worden in Nederland steeds meer energiezuinig en CO2 neutrale woningen gebouwd. Hierbij kun je denken aan het type nulwoning of een passiefhuis. Deze woningen gebruiken een groot deel van het jaar niet of nauwelijks energie en kunnen daarom in bijvoorbeeld hele zonnige periodes meer zonne-energie opwekken dan nodig is voor het energieverbruik van de woning. Dit overschot aan energie kan worden teruggeleverd aan het energienet. Niet alleen een passiefhuis of nulwoning kan een energieoverschot hebben.

Ook andere woningen en utiliteit kunnen terugleveren op het energienet. Een slimme meter is daarbij een handig instrument waarmee de teruglevering van energie inzichtelijk wordt gemaakt. Het is belangrijk dat de slimme meter goed werkt omdat energie geld kost en geld oplevert. Door gebruik te maken van een slimme meter kan de energieleverancier zien hoeveel energie daadwerkelijk is afgenomen. Daarvoor kan de energieleverancier de hoeveelheid afgenomen energie in mindering brengen op de hoeveelheid geleverde energie. In de meeste gevallen zal men meer energie afnemen dan terugleveren maar bij een nulwoning of passiefhuis is dat niet altijd het geval.

Energieverbruiksmanager
Het meten van de energieafname is slechts één aspect van energiemanagement. Iemand die echt goed inzicht wil krijgen in het energieverbruik van een gebouw of woning zal een energieverbruiksmanager moeten aanschaffen. Een energieverbruiksmanager geeft inzage in het energieverbruik. Een energieverbruiksmanager bestaat meestal uit een los kastje dat wordt aangesloten op de elektriciteitsmeter en zorgt voor meer informatie over het daadwerkelijke gebruik van gas en elektriciteit. De aansluiting van de energieverbruiksmanager kan rechtstreeks worden gedaan. Dan blijven de gegevens binnen de woning. Voor een dergelijke aansluiting kan men gebruik maken van de zogenaamde P1-poort die inde slimme meter aanwezig is.

Veel energieverbruiksmanagers werken met een softwaresysteem zoals een app. Een energieverbruiksmanager zou je daardoor kunnen rekenen tot domotica of in een bepaalde mate tot internet of things. Toch is de communicatie vanuit een energieverbruiksmanager wel eenzijdig. Men kan een energieverbruiksmanager dus niet programmeren om alle energieverbruikende installaties aan te sturen zodat meer of minder energie wordt verbruikt.

Gegevens van een slimme meter raadplegen

Slimme meters zijn een informatiebron met betrekking tot het energieverbruik van een woning of ander gebouw bijvoorbeeld utiliteit. Het is natuurlijk belangrijk dat men de meetgegevens kan uitlezen. Natuurlijk worden meetgegevens door computersystemen geregistreerd en verwerkt. De taal van computers is echter anders dan de taal van mensen. Daarom wordt gebruik gemaakt van een interface. Deze interface is meestal een display die voorzien is van een paneel met knoppen.

Door de knoppen op de interface kan een mens gegevens opvragen en als het ware communiceren met in dit geval de slimme meter. Men kan doormiddel van een stekker een display in contact brengen met de slimme meter. De display en het bijbehorende kastje is in dit geval de energieverbruiksmanager die ook in de vorige alinea werd benoemd. De energieverbruiksmanager geeft een beter inzicht in het daadwerkelijke energieverbruik van de woning. Een slimme meter kan ook draadloos gegevens doorsturen naar bijvoorbeeld een app op een smartphone of richting een energieleverancier. Uiteraard zal men wel toestemming moeten geven aan een energieleverancier voordat een dergelijke draadloze verbinding tot stand wordt gebracht.

Wat is aanvoerstroom en retourstroom in de techniek?

Retourstroom is het geheel van het terugvloeien van elektrische-, vloeistof- en gasstromen in een bepaal systeem. Men heeft het in de techniek meestal over een aanvoerstroom en een retourstroom. Aanvoerstroom is het geheel van aangevoerde vloeistof-, elektrische- en gasstromen in een bepaald systeem. Omdat er in de techniek veel gebruik wordt gemaakt van elektriciteit, gas en vloeistoffen zijn er verschillende systemen te bedenken waarbij men de aanvoerstroom en retourstroom kan illustreren. Meestal heeft men een bron waar vandaan de aanvoerstroom op gang komt. Dat kan een accu zijn of een windturbine als het gaat om elektriciteit. Ook in de installatietechniek maakt men gebruik van een aanvoerstroom bijvoorbeeld van heet water vanaf de cv-ketel naar de radiatoren. Hieronder zijn een aantal voorbeelden nader omschreven.

Aanvoerstroom en retourstroom in elektrotechniek
In de elektrotechniek dan wordt doormiddel van de fasedraad de elektrische stroom (een stroom van elektronen) naar een bepaald apparaat, verlichtingseenheid of contactdoos getransporteerd. De elektrische stroom kan op verschillende manieren worden opgewekt bijvoorbeeld doormiddel van een kolencentrale of zoals steeds vaker gebeurd doormiddel van zonnepanelen en windturbines. Vanaf die stroomvoorzieningen kan elektrische stroom doormiddel van een elektriciteitsnetwerk worden getransporteerd. Dit is echter nog steeds de aanvoerstroom. Zodra de elektrische stroom een bepaalde bewerking heeft verricht in een apparaat, machine of werktuig gaat de resterende elektrische energie via een nuldraad retour. De retourstroom vindt dus plaats doormiddel van de nuldraad.

Aanvoerstroom en retourstroom in lastechniek
Dit werkt ook zo met elektrisch lassen waarbij de elektrische stroom door de lastoorts en laselektrode aangevoerd wordt tussen de laselektrode en het werkstuk ontstaat kortsluiting en een zogenaamde vlamboog die het werkstuk en de het lastoevoegmateriaal laat smelten. Omdat er sprake is van aanvoerstroom richting het werkstuk wordt een klem aangebracht op het geleidende werkstuk. Aan de klem zit een kabel om de elektrische retourstroom af te voeren van het werkstuk.

Aanvoerstroom en retourstroom in de installatietechniek
Ook in de installatietechniek gebruikt men de termen aanvoerstroom en retourstroom. Men heeft het dan over de aanvoerstroom en retourstroom van water. Als men bijvoorbeeld kijkt naar een radiator dan is er sprake van een aanvoerstroom van water en een retourstroom van water. De aanvoerstroom van water is door de cv-ketel verwarmd en zorgt er voor dat de radiator warm wordt. De aanvoerstroom van water komt aan de bovenzijde de radiator binnen. Nadat het water warmte heeft afgegeven in de radiator koel het af en gaat het via de retourstroom weer terug naar de ketel. Dit proces is vrijwel geheel gesloten. De aanvoerstroom en de retourstroom vormen en gesloten circuit.

Aanvoerstroom en retourstroom in spoorwegen en spoorwegtechniek
Een interessante vorm van elektrische aanvoerstroom en retourstroom treft men aan in de spoorwegen. Via elektrische hoogspanningskabels krijgen treinen elektrische voeding. Deze hoogspanningskabels zijn aangesloten op het onderstation. Dit is de aanvoerstroom van elektriciteit. De trein komt in beweging en dat kost (elektrische) energie. De trein verbruikt dus elektriciteit.

Niet alle elektriciteit wordt door een trein verbruikt. Een deel van de elektriciteit zal via de retourstroom worden weggevoerd. Deze retourstroom is het totaal van elektrische stromen die tussen het elektrische spoorwegmaterieel (treinen) en het onderstation door spoorstaven en mogelijk ook door retourstroomgeleiders terugvloeit. Ook bij treinen is dus sprake van aanvoerstroom en retourstroom.

Wat is getijdenenergie?

Getijdenenergie is energie die men heeft gewonnen door gebruik te maken van eb en vloed. Tussen eb en vloed ontstaat namelijk een verschil in waterhoogte. Dit verschil in waterhoogte kan worden gebruikt om energie op te wekken. De hoeveelheid energie die men door de getijden kan opwekken heeft te maken met het verschil in de waterhoogte. Op een open oceaan zal bijvoorbeeld het verschil tussen eb en vloed slechts enkele centimeters of decimeters verschil zijn. In sommige wateren kan het verschil tussen eb en vloed echter behoorlijk groot zijn en oplopen tot meters verschil.

Dit kan doordat de kust een bepaalde vorm heeft of omdat er een bepaalde stroming is, een combinatie tussen die twee is ook mogelijk. Als er een groot verschil tussen eb en vloed ontstaat kan het water bij vloed achter een dam worden opgevangen en kan men dit bij laag water via turbines terug laten lopen naar de zee. De turbines zijn aangesloten aan generatoren zodat elektrische stroom kan worden opgewekt. In feite werkt men bij het opwekken van getijdenenergie met behulp van waterkracht elektrische energie op.

Getijdencentrale
Elektrische energie kan in verschillende soorten elektriciteitscentrales worden opgewekt. Voorbeelden hiervan zijn kolencentrales, gascentrales en waterkrachtcentrales. Getijdenenergie wordt echter opgewekt in getijdencentrales. Deze centrales bestaan uit een afsluitbare dam. Gedurende de vloed wordt de dam open gezet zodat het vloedwater kan stromen in de waterbekken die zich achter de dam bevinden. Als de hoogste waterstand is bereikt worden de sluisdeuren gesloten. Het water wordt dan in de waterbekken gehouden. Vervolgens wacht men totdat het water zover is weggeëbd dat het water op de laagste stand staat. Dan worden de deuren van de dam open gezet. Het water gaat dan vervolgens langs waterkrachtturbines  terug naar de zee stromen. De druk van het water dat hierbij naar beneden valt zorgt er voor dat de schoepen van de turbines hard gaan draaien. De turbines drijven daarbij de generatoren aan en deze wekken vervolgens elektriciteit op.

Problemen bij getijdenenergie
De hoeveelheid energie die opgewekt wordt is afhankelijk van het watervolume dat door de turbines stroomt en het verschil in de hoogte van het water voor de dam en achter de dam. Een getijdencentrale levert ongeveer 12 uur elektrische energie. Dat zorgt er voor dat er na 12 uur een periode ontstaat waarin geen elektrische energie kan worden opgewekt. Dat zorgt er voor dat een getijdencentrale slechts in een beperkte periode elektrische energie kan leveren. Deze cyclus is afhankelijk van de getijden en daardoor afhankelijk van wat door de natuur geboden wordt. De getijdenstroom valt echter lang niet altijd samen met de vraag naar elektriciteit. Daardoor wordt bijvoorbeeld te weinig of geen elektriciteit geleverd in een periode waarin dat juist wel gewenst is. Het verschil kan worden opgevangen door ook bij de waterstroom van vloedwater elektriciteit op te wekken. Daarvoor zijn echter aangepaste turbines nodig.

Deze turbines zijn duurder en complexer dan de turbines die worden gebruikt bij het laten terugstromen van water tijdens eb. Dit is echter niet het enige probleem dat ontstaat bij getijdenenergie. Het zoute zeewater zorgt er voor dat er corrosie ontstaat aan metalen delen van deze installatie. Verder verstoort de getijdencentrale voor bepaalde zeedieren het verschil tussen eb en vloed. Dat komt omdat deze centrales deze natuurlijke werking verstoren door de opslag van het vloedwater in de waterbekken. 

Wat is energieopslagtechniek?

Energieopslagtechniek is het gebruiken van technische oplossingen en mogelijkheden om elektrische energie op te slaan. Er zijn verschillende energieopslagtechnieken die gebruikt kunnen worden om elektriciteit op te slaan. Deze opslagtechnieken worden vrijwel altijd gebruikt om een balans te realiseren tussen de vraag naar elektriciteit en het aanbod van elektriciteit op een elektriciteitsnetwerk.

Producenten van elektriciteit zoals kolencentrales maar ook grote windparken sturen goedkope overtollige dalurenelektriciteit via het transmissienet naar zogenaamde buffercentrales. Deze buffercentrales worden gebruikt voor tijdelijke opslag van de energie. Buffercentrales spelen tevens een rol bij de grootschalige belastingsverdeling van een onderling verbonden elektriciteitsnetwerk.

Energieopslagtechniek is een oplossing voor black-outs
Wanneer er ten opzichte van de vraag naar elektriciteit te weinig elektriciteit wordt opgewekt dan kan men zich wenden tot de buffercentrales om meer elektrische energie op het elektriciteitsnet te distribueren naar de afnemers. Men zou de buffercentrales dan kunnen beschouwen als energieleveranciers. Door energieopslagtechniek worden de kosten van elektriciteit bij een sterk stijgende vraag naar elektriciteit beperkt. Men kan dan namelijk elektriciteit uit de buffercentrales halen. Als men geen energieopslagtechniek zou gebruiken dan was men genoodzaakt om voortdurend veel elektriciteit te produceren. Dan zou er juist sprake zijn van een overproductie op de elektriciteitsmarkt op momenten met weinig vraag naar elektriciteit.

Als men de productie niet zou gaan verhogen wordt de kans groot dat er zogenaamde back-outs ontstaan op het elektriciteitsnet. Deze black-outs zijn momenten waarop er te weinig stroom beschikbaar is ten opzichte van de vraag. Black-outs kunnen echter worden voorkomen door energieopslagtechniek. Nu steeds meer kolencentrales worden gesloten en men steeds meer gebruik gemaakt maakt van windmolenparken is naast de vraag naar elektriciteit ook het aanbod van elektriciteit niet meer constant.

Men is voor de opbrengsten van elektriciteit immers afhankelijk van de windkracht die aanwezig is om de windturbines in beweging te brengen. Als er te weinig windkracht is kunnen er ook black-outs ontstaan op het elektriciteitsnet als de vraag naar elektriciteit constant blijft of toeneemt. Juist dan is energieopslag van groot belang om voor een constante beschikbaarheid van elektriciteit te zorgen. Dit is echter nog moeilijk realiseerbaar in de praktijk. Men verwacht namelijk enorme schommelingen in de energieproductie van windmolens en zonne-energie. Verschillende engineers zijn op dit moment bezig om een concrete werkbare oplossing te bedenken voor dit probleem.

Wat is een duspol of tweepolige spanningzoeker?

Duspol is een merk voor een tweepolige spanningzoeker. Het merk duspol is een geregistreerde handelsmerk voor een meetinstrument dat in de elektrotechniek gebruikt wordt. Een duspol bevat twee meetpennen die over het algemeen een rode kleur hebben. Deze pennen zijn aan elkaar verbonden doormiddel van een soepel, dun snoer dat een donkergrijze of zwarte kleur heeft.

Meetpennen van een duspol
Een duspol heeft twee meetpennen maar de omvang van deze pennen verschilt. De handgreep van één van de pennen is groter dan het handvat van de andere pen. De dikkere meetpen heeft een ingebouwde spanningsindicatie. Over het algemeen bestaat deze spanningsindicatie leds. Bij de leds is een duidelijke omschrijving aangegeven van hetgeen gemeten wordt. Het is echter ook mogelijk dat men in het dikkere handvat een digitaal afleesscherm heeft aangebracht waar men de waardes van kan aflezen.

Hoe werkt een duspal
Een duspal wordt gebruikt als meetinstrument voor de elektrotechniek. Het is een spanningszoeker wat in feite inhoudt dan men met een duspal kan meten of op een bepaald elektrotechnisch component spanning staat of niet. Men kan een duspal bijvoorbeeld gebruiken om de spanning te meten in een wandcontactdoos. Als een wandcontactdoor is voorzien van een aardcontact dan kan men het beste eerst de beide spanningvoerende contactpolen controleren met de duspal. Als men vervolgens de contactpolen om de beurt op de aarde gaat meten kan men bepalen welke contactpool de stroom aanvoert en welke de nul is.

Lekstroom
Een aardlekschakelaar wordt ingeschakeld wanneer er sprake is van zogenoemde lekstroom. Een spanningzoeker zoals een duspal trekt stroom. Als men de duspal gaat gebruiken om de spanning te meten tussen de fase en de aarde dan zal er een lekstroom gaan lopen. Als de elektrische installatie goed functioneert zal de aardlekschakelaar vanwege de lekstroom worden ingeschakeld. Als dat gebeurd wordt de levering van elektrische spanning stopgezet. Om dit te voorkomen hebben sommige tweepolige spanningzoekers een speciale testfunctie met een hoge impedantie. Deze testfunctie wordt gebruikt om de lekstromen te onderdrukken.

Meetbereik van duspal spanningzoeker
Het meetbereik van spanningszoekers kan verschillen. Een tweepolige spanningzoeker heeft over het algemeen een bereik van ongeveer 6 Volt tot 400 Volt. Het aantal Volt wordt in verschillende waarden aangegeven. Deze waardes lopen op en zijn vermeld op de spanningsindicatie van het dikke handvat van de duspal. Een duspal of tweepolige spanningzoeker is geschikt voor het meten van zowel gelijkspanning als wisselspanning.

Wat is een eenpolige spanningzoeker?

Een spanningzoeker is gereedschap waarmee men kan meten of ergens elektrische spanning op staat. Elektromonteurs en installateurs gebruiken vaak een spanningszoeker om te meten of er bijvoorbeeld spanning staat op contactpolen voordat ze daadwerkelijk hun werkzaamheden gaan verrichten. Men moet namelijk spanningsvrij werken om te voorkomen dat men onder elektrische spanning komt te staan tijdens werkzaamheden.

Het onder spanning komen te staan van een persoon wordt ook wel een elektrische schok genoemd en is zeer gevaarlijk voor de gezondheid. Men kan zelfs overlijden ten gevolge van een elektrische schok. Daarom moet men van te voren goed meten of ergens elektrische spanning op staat. Men kan hiervoor een eenpolige spanningszoeker of een tweepolige spanningzoeker (ook wel duspal genoemd) gebruiken. In onderstaande tekst is de werking van een eenpolige spanningzoeker beschreven.

Eenpolige spanningszoeker
Een eenpolige spanningszoeker is de meest eenvoudige en goedkope spanningzoeker die een elektromonteur kan gebruiken. Deze spanningzoeker bestaat uit één pen die in een contactpool kan worden gestoken om te meten of deze onder elektrische spanning staat of niet. Een bekend voorbeeld van de eenpolige spanningszoeker is de fittingschroevendraaier met neonlampje. Dit zijn kleine doorzichtige schroevendraaiertjes die aan het uiteinde een platte schroefkop hebben.

Vanaf deze platte schroefkop is de schroevendraaier geheel geïsoleerd. Deze isolatie voorkomt dat de gebruiker van de spanningszoeker onder elektrische spanning komt te staan tijdens het verrichten van metingen met de spanningszoeker. Het is belangrijk dat deze isolatie niet beschadigd wordt. In de spanningzoeker zit een klein neonlampje dat oplicht als de spanningszoeker een spanning voerend deel van de elektrische installatie raakt met het metalen uiteinde (platte schroevendraaierkop).

Hoe wordt een eenpolige spanningszoeker gebruikt?
Een eenpolige spanningszoeker wordt gebruikt voor het meten van de aanwezigheid van een wisselspanning tussen de 110 V en 240 V. Over het algemeen wordt de eenpolige spanningszoeker gebruikt als fasetester als men werkzaamheden gaat verrichten aan lichtnetinstallaties in bijvoorbeeld woningen of utiliteit.

De eenpolige spanningszoeker wordt met de punt in contact gebracht met een deel van een elektrische installatie. Men moet daarbij de vinger op het uiteinde van het kunststof heft houden. Als het gedeelte dat geraakt wordt met de spanningszoeker ook daadwerkelijk spanning voert dan zal het neonlampje in de spanningszoeker gaan branden. Het  neonlampje gaat branden door de elektrische spanning. Er is echter ook een hoogohmige weerstand aanwezig in de spanningszoeker die zorgt er voor dat het lampje door de elektrische spanning niet kapot brand.

Belangrijke informatie over spanningszoeker
Het branden van het lampje van de spanningzoeker geeft aan dat er spanning staat op het onderdeel van de elektrische installatie. De exacte hoogte van de spanning wordt door de eenpolige spanningsmeter niet aangegeven. Het lampje gaat over het algemeen branden als er een spanning wordt gemeten van 110 Volt tot 240 Volt.

Als het neonlampje niet brand is dat niet een garantie dat een geleider spanningsloos is. Er zijn namelijk een aantal factoren die van invloed zijn op de werking en het aflezen van de spanningszoeker. Allereerst kan de elektromonteur de spanningzoeker niet goed hanteren waardoor het lampje niet gaat branden. Hij of zij kan de spanningzoeker niet stevig genoeg tegen de geleider aanhouden waardoor de spanningzoeker de spanning niet goed kan meten.

Ook kan de geleider of de spanningszoeker bevuild zijn wat het meten en aflezen bemoeilijkt. Het lampje kan bovendien kapot zijn of er is een te grote overgangsweerstand tussen de vinger en contactplaatje waardoor het licht van het lampje te zwak is. Om er zo zeker mogelijk van te zijn dat de spanningzoeker werkt kan men de spanningszoeker het beste van te voren testen door de spanningzoeker in een contactpool te steken van een wandcontactdoos waar spanning op staat.

Professioneel gebruik eenpolige spanningzoeker is niet toegestaan
Een eenpolige spanningszoeker kan wel door elektromonteurs worden gebruikt maar ze zijn niet toegestaan voor professioneel gebruik. Om de hierboven genoemde redenen wordt een eenpolige spanningszoeker onvoldoende betrouwbaar geacht. De Nederlandse norm voor veilige bedrijfsvoering van werkzaamheden aan elektrische installaties is de NEN 3140. Hierin staan richtlijnen voor het veilig werken aan elektrische installaties. In de NEN 3140 is vastgelegd dat men voor het aantonen van spanningafwezigheid een tweepolige meting dient te doen. Hiervoor maakt men gebruik van een tweepolige spanningzoeker zoals een duspal. Een duspal is een merk van een tweepolige spanningzoeker.

Wat is een contactloze spanningszoeker?

Voor het meten van elektrische spanning gebruikt men over het algemeen een enkelpolige of tweepolige spanningszoeker zoals een duspal. Een enkelpolige spanningszoeker mag niet professioneel worden gebruikt omdat deze minder betrouwbaar is dan een tweepolige spanningzoeker. Dit is vastgelegd in de NEN 3140. Zowel een enkelpolige spanningszoeker als een tweepolige spanningszoeker worden gebruikt om metingen te verrichten aan onderdelen van elektrische installaties. Daarbij moet echter wel contact worden gemaakt met de geleiders van de installatie. Er zijn echter ook spanningszoekers waarbij geen direct contact gemaakt hoeft te worden met de installatie of onderdelen daarvan. Deze spanningszoekers worden ook wel contactloze spanningzoekers genoemd.

Hoe werkt een contactloze spanningzoeker?
Een contactloze spanningzoeker bevat een sensor waarmee een  elektrische veldsterkte om een spanningvoerende geleider wordt gedetecteerd. Contactloze spanningszoekers zijn alleen geschikt voor het opsporen van een wisselspanning. Er zijn verschillende soorten contacloze spanningzoekers en het meetbereik van deze meetinstrumenten kan verschillen. Over het algemeen kan men deze spanningzoekers gebruiken om een spanning te meten van 100 tot 1000 volt.

Een contactloze spanningzoeker hoeft geen daadwerkelijk contact te maken met een blanke geleider. In plaats daarvan kan men met de contactloze spanningzoeker elektrische spanning meten door de spanningszoeker in de buurt van een contactdoos, stroomdraad of contactstrip te houden. Het is zelfs mogelijk om met een contactloze spanningszoeker elektrische spanning te meten die stroomt door een geïsoleerde draad. Men kan hierdoor vaak eenvoudig onderbrekingen van elektrische spanning opsporen in kabels.

Hoe kan men een contactloze spanningzoeker aflezen?
Een contactloze spanningzoeker bevat een led. Deze led gaat branden als de sensor elektrische spanning meet. Daarnaast is er ook vaak een akoestische signalering met een pieptoon. In tegenstelling tot een eenpolige spanningszoeker bevat een contactloze spanningszoeker elektronica. Daarvoor is voedingsspanning nodig die wordt geleverd door twee potloodbatterijen (AAA).

Wat is een energielabel?

Een energielabel is een label dat wordt gebruikt om de energiezuinigheid van een bepaald product, apparaat of onroerend goed aan te duiden. Het energielabel moet voldoen aan verschillende Europese richtlijnen:

  • 92/75/CEE,
  • 94/2/CE,
  • 95/12/CE,
  • 96/89/CE,
  • 2003/66/CE

Het energielabel moet verplicht worden meegeleverd bij de verkoop van gebouwen, auto’s, elektrische apparaten en lampen. De potentiële koper krijgt door het energielabel extra informatie over het product waar hij of zij interesse in heeft.

Hoe ziet een energielabel er uit?
Het energielabel is een etiket die aan een product wordt bevestigd of op een product wordt geplakt. Op het energielabel zijn een aantal balkjes geplaatst in verschillende kleuren. De balkjes lopen op van donkergroen tot donkerrood. Op de balkjes staan letters die oplopen van de letter ‘A’ tot de letter ‘G’. De letter ‘A’ is in het donkergroen aangegeven en dat maakt duidelijk dat een product die deze aanduiding verdient het meest milieuvriendelijk is. Vanaf deze letter geven de aanduidingen een steeds minder gunstige energiebeoordeling. Producten, apparaten, voertuigen en gebouwen die in de energieklasse ‘G’ vallen kunnen worden beschouwd als het meest milieuonvriendelijke.

Waarom een energielabel?
Allereerst is een energielabel voor een aantal producten en apparaten verplicht. Een energielabel stelt consumenten voor een duidelijke keuze tussen producten. In plaats van het design, de vormgeving en de functionaliteiten van een product wordt ook de energiezuinigheid een aspect waarop consumenten bewust voor een bepaald product, apparaat of woning kunnen kiezen. Men is zich in de wereld steeds meer bewust van het milieu en maatschappelijke aspecten. Een ‘groen’ product heeft aantrekkingskracht voor particulieren en bedrijven.

Veel ondernemers worden door de verplichte energielabels gedwongen na te denken over het ontwikkelen van energiezuiniger producten, machines en apparaten. De energielabels werken twee kanten op: ondernemers maken zuiniger producten en de consumenten waarderen dat door energiezuiniger producten te kopen. Zo ontstaat een cirkel van productontwikkeling die gericht is op milieuvriendelijkheid.

Wat is een alternator of wisselstroomdynamo?

Een wisselstroomdynamo of alternator is een machine waarmee men mechanische energie kan omzetten in elektrische wisselstroomenergie. De mechanische energie komt binnen via een draaiende as. Dit is bewegingsenergie oftewel mechanische energie. De bewegingsenergie wordt omgezet in elektrische energie. Men kan beweging dus met behulp van een alternator omzetten in elektriciteit.

Hoe werkt een alternator?
De as, die de mechanische energie overbrengt, is bevestigd aan een rotor. Dit deel draait in een stilstaand gedeelte dat ook wel de stator wordt genoemd. De elektrische geleider aan de rotor beweegt zich door een magnetisch veld waardoor elektrische spanningen worden opgewekt in de geleider. Bij een gesloten kring ontstaat er een stroom die gaat vloeien.

Bij kleine alternatoren wordt het magnetisch veld opgewekt door één of meerdere permanente magneten. Als men gebruik maakt van grotere alternatoren zit er een elektromagneet in de rotor. De stator bevat één of meerder spoelen waarin de gewenste  sinusvormige wisselspanning wordt opgewekt door de rotor.

Waar worden alternatoren toegepast?
Alternatoren worden in verschillende technische installaties toegepast. Hieronder zijn drie bekende voorbeelden genoemd:

  • In elektriciteitscentrales zoals kolencentrales maar ook kerncentrales wekt men elektriciteit op en daarvoor worden alternatoren gebruikt.
  • Veel moderne auto’s bevatten een alternator in plaats van een dynamo. Voor 1960 maakte men in de autotechniek gebruik van dynamo’s. Tegenwoordig maakt men gebruik van een 3 fasen alternator. De opgewekte wisselspanning wordt gelijkgericht met diodebruggen. De aandrijving van de alternator wordt gedaan door de motor van de auto met behulp van een V-snaar of multiriem. Via een spanningsregelaar laadt de alternator de accu van de auto op.
  • Veel aggregaten bevatten een verbrandingsmotor. Met deze verbrandingsmotor wordt de generator aangedreven. De verbrandingsmotor levert energie die doormiddel van de alternator omgezet wordt in elektrische energie. Aggregaten worden daarom vaak gebruikt voor elektrische energievoorziening als er geen netstroom aanwezig is of als er een storing is in het lichtnet.

Wat is grijze energie of grijze stroom?

Elektrische stroom is kleurloos, men kan niet zeggen dat de stroom van elektronen een bepaalde kleur heeft. Daarnaast kan men al helemaal niet zeggen dat er sprake is van verschillende kleuren van elektronenstromen. Ondanks dit feit heeft men het in de praktijk vaak over groene stroom en grijze stroom. Over groene stroom is vrij veel informatie te vinden over grijze stroom is minder te vinden op internet. Dit komt omdat groene stroom populair is. Grijze stroom is minder populair en dat heeft voor een deel ook te maken met de benaming. Grijs klinkt nu eenmaal minder populair als groen. Groen wordt gezien als kleur van de verjonging en jeugdigheid. Grijs is de kleur van verouderd of gedateerd. Eigenlijk is dit ook het geval bij de kleuraanduiding voor groene en grijze stroom.

Groene stroom
Groene stroom is de laatste jaren veel in het nieuws. Bij groene stroom hebben veel mensen een duidelijk beeld. Men denkt aan duurzame energie die wordt gewonnen doormiddel van windturbines of de zonnecellen in zonnepanelen. Bij deze energie wordt er gebruik gemaakt van elementen die reeds in de natuur aanwezig zijn zoals zonlicht en windkracht. Ook waterkracht is een bron waaruit men elektrische energie kan winnen. Daarvoor zijn echter wel bepaalde technische voorzieningen nodig die in gebruik misschien niet heel milieubelastend zijn maar wel in de bouw en productie daarvan. Groene energie is vaak duurder dan grijze energie omdat er meer voorzieningen voor nodig zijn. Voordeel van groene energie is dat deze energie duurzaam is en nooit opraakt. Immers zo lang de wind waait, het water stroomt en de zon schijnt kan men energie winnen uit deze elementen en weersinvloeden.

Grijze energie
In tegenstelling tot groene energie worden bij grijze energie wel brandstoffen verbrand. Men heeft het daarbij over het algemeen over fossiele brandstoffen. Tegenwoordig worden echter ook wel houtpallets mee gestookt. Dit stoken gebeurd in kolencentrales. In een kolencentrale wordt voornamelijk steenkool verbrand. Hierdoor ontstaat een enorme hitte waarmee water wordt omgezet in stoom. De stoomdruk brengt turbines in beweging die zeer snel gaan draaien. Zo wordt elektrische energie opgewekt. Het winnen van deze energie is goed te controleren omdat men niet afhankelijk is van het weer. Een nadeel is echter dat de fossiele brandstoffen op den duur op raken. Daarnaast is de CO2 uitstoot van kolencentrales enorm. Daarom wordt grijze energie ook wel niet-duurzame energie of milieubelastende energie genoemd.

Toekomst van grijze energie
Grijze energie is altijd belangrijk geweest voor de energievoorziening van bedrijven en huishoudens. De laatste jaren investeert men echter steeds meer in duurzame energie en worden de grijze energiebronnen zelfs openlijk ter discussie gesteld. Men vraagt zich af of men nog wel fossiele brandstoffen moet gaan verstoken of dat men beter geheel over kan gaan op groene energie. Verschillende overheden zijn al in gesprek met de eigenaren van kolencentrales om te kijken of de kolencentrales geheel gesloten kunnen worden. Vanuit de hele wereld is dit nu bespreekbaar geworden. Toch kan men nog geen duidelijk antwoord geven op de vraag hoe men elektrische energie voor veel afnemers kan opslaan voor het geval de windmolens tijdelijk onvoldoende elektrische energie produceren.

Waarom heet een spaarlamp een spaarlamp?

Een spaarlamp is een compact fluorescentie lamp en wordt afgekort met CFL. Deze lamp is in de jaren zeventig ontwikkeld en is in de jaren tachtig op de markt gekomen. De eerste spaarlampen waren vrij kostbaar in de aanschaf. Daarnaast hadden de oude spaarlampen niet een beduidend hoger rendement dan de gloeilampen. Met een spaarlamp ‘bespaarde’ je dus niet veel meer energie dan een gloeilamp. De ontwikkeling van spaarlampen stond echter niet stil. Er ontstonden verschillende generaties spaarlampen. De huidige generatie spaarlampen wordt ook wel de vierde generatie spaarlampen genoemd. Deze spaarlampen zijn wel beduidend energiezuiniger dan de gloeilampen.

Een spaarlamp bespaard
Met een spaarlamp bespaard men omdat deze lamp verhoudingsgewijs weinig energie verbruikt. Daarnaast produceert een spaarlamp ook veel minder warmte dan bijvoorbeeld een gloeilamp. Een gloeilamp is in feite een soort staalkachel die in een fitting past. Omdat gloeilampen zoveel energie verbruiken, is het gebruik van deze lampen in de EU inmiddels verboden. Dat is niet verwonderlijk want lampen verbruiken verhoudingsgewijs veel energie in woningen. Sinds 2012 kan een consument geen spaarlampen meer aanschaffen.

Wat is een spaarlamp precies?
Een spaarlamp is in feite een soort tl lamp. Deze is echter in een speciale vorm geproduceerd. Een spaarlamp past in een normale lampfitting met schroefdraadverbinding. Een spaarlamp is aangesloten op het lichtnet of op een fitting met een andere stroombron. De elektrische stroom gaat door een glazen buis die gevuld is met kwikdamp. De elektronen uit de elektrische stroom botsen tegen de kwikatomen aan en daarbij worden andere elektronen uit de baan gestoten. Bij het terugvallen vande aangeslagen toestand naar de grondtoestand komt energie vrij in de vorm van ultraviolette straling. Deze straling is echter onzichtbaar. Daarom zit aan de binnenkant van de glazen buizen een dun laagje wit poeder. Deze zorgt voor verschillende fluorescenties vandaar de naam compact fluorescentie lamp. De naam spaarlamp wordt gebruikt omdat deze lamp energiebesparend is.

Wat is de Kooi van Faraday of de Faraday cage?

De Kooi van Faraday is een benaming voor een behuizing die gemaakt is van materiaal dat elektriciteit geleid.  De behuizing bestaat uit een kooi die gemaakt is van bijvoorbeeld koper of ander materiaal dat elektriciteit goed geleid. Door dat de kooi aan de buitenzijde is voorzien van elektriciteit geleidend materiaal kunnen statische elektrische velden niet tot in de kooi doordringen. Hierdoor biedt de kooi onder andere bescherming tegen een statische ontlading zoals deze ontstaat bij blikseminslag. De volgende punten zijn van belang om te onthouden:

  • De Kooi van Faraday is ook ondoordringbaar door  elektromagnetische straling wanneer de maaswijdte kleiner is dan een tiende van de golflengte van die elektromagnetische straling. De doordringbaarheid is echter afhankelijk van de gewenste uitdoving.
  • De Kooi van Faraday kan wel worden doordrongen door een  aardmagnetisch veld en andere statische magnetische velden.

Waarom de naam Kooi van Faraday?
De Kooi van Faraday is genoemd naar de Britse Natuur- en Scheikundige Michael Faraday (22 september 1791 – 25 augustus 1867). In het Engels wordt deze kooiconstructie van geleidend materiaal ook wel de Faraday cage genoemd.

De Kooi van Faraday tegenwoordig
Tegenwoordig wordt er nog gebruik gemaakt van ruimtes die elektromagnetische straling moeten  buitensluiten. Deze ruimtes worden ook wel elektromagnetisch dode ruimtes genoemd. In feite zijn deze ruimtes gebaseerd op het principe van de Kooi van Faraday. Verder zijn er nog een aantal praktische toepassingen van de Kooi van Faraday:

  • Magnetrons vormen ook een Kooi van Faraday. Dit komt doordat magnetrons bestaan uit een metalen kast. De doorzichtige deur van de magnetron is opgedampt met een metaalfilm. Deze metaalfilm bevat kleine gaatjes zodat men er doorheen kan kijken. De metalen behuizing zorgt er voor dat er geen elektromagnetische straling naar buiten kan ontsnappen. De geleidende metalen behuizing zorgt er daarnaast voor dat er een reflectie ontstaat waardoor een golfpatroon wordt gecreëerd.
  • Een MRI-scanner staat in een ruimte die van de buitenwereld is afgeschermd doormiddel van een Kooi van Faraday.
  • Verder wordt de Kooi van Faraday tegenwoordig nog gebruikt voor het testen en controleren van apparatuur zoals de noodzendertjes voor vliegers bij de Koninklijke Luchtmacht. Deze noodzendertjes worden gecontroleerd en afgeregeld in een elektromagnetisch dode ruimte.
  • Een volledig afgesloten auto of caravan die gemaakt is van geleidend materiaal (bijvoorbeeld metaal) kan het zelfde effect hebben als de Kooi van Faraday. Hierin is men goed beschermd tegen blikseminslag omdat deze de lading van de bliksem via de buitenkant van de auto of caravan wordt afgevoerd. Er kan nog wel sprake zijn van restlading.
  • Een metalen afsluitbare boot kan eveneens dienen als  een kooi van Faraday in geval van bliksem. Men kan dan bij nood schuilen in de kajuit. Het meest veilig zit men uiteraard aan wal. Daarbij komt dat veel boten tegenwoordig van kunststof zijn gemaakt en een mast hebben met metalen er in verwerkt. Deze boten zijn juist zeer onveilig bij onweer.
  • Soms worden horloges ook wel uitgerust met een Kooi van Faraday om deze te beschermen tegen magnetische velden die worden opgewerkt door elektrische apparatuur zoals computers, mobiele telefoons en huishoudelijke apparatuur.

Wat is een geleider volgens de elektriciteitsleer?

Geleiders zijn volgens de elektriciteitsleer materialen en voorwerpen die elektrische stroom geleiden. Een goede geleider vertoont weinig weerstand tegen de elektrische stroom die er doorheen wordt getransporteerd. Hoe minder weerstand een materiaal of voorwerp tegen elektrische stroom biedt hoe beter de geleider te gebruiken is in de elektrotechniek. Alle metalen zijn geleiders van elektrische stroom. Er zijn echter wel verschillen in de eigenschappen van metalen. Sommige metalen zijn betere geleiders dan ander metalen. Metalen met een zeer kleine soortelijke weerstand tegen elektrische stroom zijn zilver en koper. Dit komt omdat het enige valentie-elektron van deze metalen zich bijna geheel als een vrij gas beweegt door het kristalrooster van het scheikundig element.

Temperatuurcoëfficiënt
Het overgrote deel van de metalen heeft een positieve temperatuurcoëfficiënt. Dit houdt in dat de weerstand van het metaal tegen elektronen toeneemt als de temperatuur van het metaal stijgt. Deze weerstand neemt toe omdat de atomen in het kristalrooster meer gaan trillen als de temperatuur hoger wordt. Door deze trilling wordt de beweging van de elektronen in de kristalroosters verstoort. Hierdoor kunnen de elektronen zich steeds moeilijker door het kristalrooster verplaatsen naarmate de temperatuur van het metaal wordt verhoogd of hoger wordt.

Supergeleiders
Supergeleiders zijn stoffen of materialen die geen weerstand bieden tegen elektrische stroom. Bij sommige materialen verdwijnt de weerstand tegen elektrische stroom als het materiaal op een bepaalde lage temperatuur wordt gebracht. Men spreekt van supergeleiding wanneer men stroom op gang brengt in een gesloten kring die bestaat uit supergeleidend materiaal en deze stroom gehandhaafd blijft en zal blijven rondlopen zonder aangelegde elektrische spanning. De kringstroom wekt een magnetisch veld op. Met supergeleiders kan men een permanent magnetisch veld opwekken. Doordat deze magneten permanent magnetisch zijn, worden ze veel toegepast. Het grote nadeel van permanente mageneten die gemaakt worden uit supergeleiders is de koeling. De meeste materialen worden supergeleidend bij zeer lage temperaturen. Deze temperaturen zijn slechts enkele graden boven het absolute nulpunt. Het koelen van de supergeleidende magneten gebeurd met kostbare koelinstallaties die veel energie gebruiken. Voor het koelen wordt meestal gebruik gemaakt van  vloeibaar helium.

Halfgeleiders
Halfgeleiders zijn stoffen die op het gebied van elektrische geleiding in het midden staan tussen een geleider en een isolator. Als men de structuur van halfgeleiders bekijkt kan men de conclusie trekken dat het om een isolator gaat. Echter een halfgeleider kan gemakkelijk in een geleider worden verandert. Hierbij zijn de eigenschappen op elektrisch gebied goed te manipuleren. Om de elektrische eigenschappen van halfgeleiders te verbeteren kan men elementen of bestandsdelen toevoegen die over de gewenste eigenschappen beschikken.

Er zijn ook stoffen die halfgeleider worden genoemd omdat ze geen groot geleidingsvermogen hebben en het geleidingsvermogen in grote mate afhankelijk is van de temperatuur waarin de stoffen worden gebruikt of geplaatst. Doormiddel van een speciale bewerking, genaamd dotering kunnen de eigenschappen van deze halfgeleiders worden beïnvloed. Halfgeleiders kunnen worden gebruikt voor het maken van componenten.

Welke zonnecellen worden toegepast in zonnepanelen voor het opwekken van energie?

Zonne-energie is populair. Niet alleen bedrijven investeren in zonne-energie ook particulieren en overheidsinstellingen kiezen er steeds vaker voor om zonnepanelen te plaatsen. Zonnepanelen zien er niet aantrekkelijk uit op daken van woningen of in zonneweides. Dit nadeel wordt echter voor een deel gecompenseerd door de voordelen die zonne-energie heeft met betrekking tot het milieu en de besparing van de energiekosten.

Er zijn door de jaren heen verschillende zonnepanelen ontwikkeld. Ook zijn er verschillende zonnecellen die kunnen worden toegepast in de panelen. Er worden drie belangrijke varianten van zonnecellen onderscheiden. Dit zijn de Monokristallijn cellen, de Polykristallijn cellen en de Amorf panelen. De laatste wordt ook wel dunne film genoemd. Naast de genoemde soorten zonnecellen zijn er ook ontwikkelingen waarbij men organische zonnecellen wil toepassen in zonnepanelen. De ontwikkelingen in de zonne-energie staan niet stil. Het is goed denkbaar dat er in de toekomst ook nog andere typen zonnecellen worden ontwikkeld en toegepast in zonnepanelen of zonnekegels. Verwacht wordt dat deze nieuwe varianten van zonnecellen pas over een aantal jaren voldoende ontwikkeld zijn dat ze toegepast kunnen worden. De belangrijkste zonnecellen zijn op dit moment nog de Monokristallijn, de Polykristallijn en de Amorf panelen. Hieronder worden deze verschillende varianten van zonnecellen kort uitgelegd.

  • Monokristallijn cellen: deze zonnepanelen bevatten één kristal. De oppervlakte van deze zonnecellen is egaal vlak en bestaat uit geordende elektroden. Zonnepanelen die voorzien zijn van monokristallijn cellen hebben op dit moment een hoog rendement. Dit betekend dat ze in verhouding tot andere zonnecellen veel zonlicht in elektrische energie kunnen omzetten. Ten opzichte van polykristallijne zonnecellen zijn monokristallijne zonnecellen wel duurder in aanschaf ondanks het hoge rendement.
  • Polykristallijn cellen: zonnepanelen met  polykristallijne zonnecellen bevatten meerdere grove kristallen. Deze geven een patroon dat lijkt op gebroken scherven. Polykristallijne zonnecellen hebben minder rendement dan monokristallijn cellen. Toch is het rendement van polykristallijncellen op zich redelijk. Als er voldoende ruimte aanwezig is het aantrekkelijk om zonnepanelen te plaatsen die bestaan uit  polykristallijn zonnecellen.
  • Amorf of dunne film of thin-film zonnecellen: zonnepanelen die voorzien zijn van dit type zonnecel bevatten geen kristallen. In plaats daarvan bevatten deze kristallen een soort poeder. De dunne-film zonnepaneel bevat  amorf silicium. Deze zonnecellen worden in de praktijk nauwelijks toegepast in zonnepanelen. Dat komt door het lage rendement. Zowel monokristallijn cellen als polykristallijn cellen leveren meer rendement. De prijs van amorf of dunne film zonnecellen is wel lager. Daarnaast zijn dunne film zonnecellen goed in verschillende vormen te brengen dit komt omdat deze zonnecellen buigzaam zijn. Dunne film zonnecellen worden veel gebruikt in rekenmachines en andere kleine machines die doormiddel van zonne-energie gevoed worden. in de toekomst zullen dunne film zonnecellen vermoedelijk op veel meer plaatsen worden toegepast. Hierbij kan gedacht worden aan dakbedekking.

Wat is een turbine en waarvoor worden turbines gebruikt in de techniek?

Turbines worden op verschillende manieren toegepast in de techniek. De naam turbine is afgeleid van het Latijnse woord ‘turbinis’ dit betekend in het Nederlands wervelstroom. Claude Burdin is de persoon die de naam turbine has voorgesteld in 1828 tijdens een ingenieurswedstrijd. Er bestaan verschillende soorten turbines. Men kan turbines indelen op een aantal manieren. Zo kan men turbines indelen in gasturbines, stoomturbines, windturbines en waterturbines. Zo maken waterkrachtinstallaties bijvoorbeeld gebruik van waterturbines. Deze turbines worden door water in beweging gebracht. Windturbines komen in beweging door de kracht van de wind. Naast de onderverdeling tussen de vloeistoffen en gassen die een turbine in beweging brengen kan men turbines ook op een andere manier indelen. De onderverdeling tussen impulsturbines en reactieturbines komt in de praktijk ook voor.

Hoe werken turbines?
Turbines zijn turbomachines die stromingsenergie omzetten in mechanische energie. Deze stromingsenergie kan uit een stroom vloeistof of gas bestaan en heeft een bepaalde snelheid. Als men deze stroom richt op een schoepenrad die bevestiging is aan een rad zorgt de snelheid van de stroom vloeistof of gas er voor dat het rad gaat draaien. Het is belangrijk dat de stroming goed wordt geleid in de gewenste richting. Daarom worden meestal behuizingen aangebracht rond het schoepenrad. Dit gebeurd bijvoorbeeld bij stoomturbines, gasturbines en waterturbines. Als men de stroming van het gas of de vloeistof goed stuurt in de richting van het schoepenrad draait deze effectiever en werkt de turbine beter. Doormiddel van het  roterend schoepensysteem zet de turbine de stromingssnelheid om in mechanische energie. De mechanische energie kan vervolgens worden gebruikt voor de aandrijving van een machine of een elektrische generator.

Waarvoor worden turbines gebruikt?
Turbines worden gebruikt om stromingsenergie om te zetten in mechanische energie oftewel bewegingsenergie. Hierdoor kunnen machines direct worden aangedreven maar het is ook mogelijk om turbines te gebruiken om elektriciteit op te wekken. Hiervoor worden bijvoorbeeld stoomturbines gebruikt in elektriciteitscentrales. De stoomdruk of stoomsnelheid brengt hierbij een schoepenrad in beweging. Een generator zet vervolgens deze beweging om in elektrische energie. Ook met windmolens of windturbines kan elektriciteit worden opgewekt. Deze turbines worden doormiddel van de wind in beweging gebracht. Hierbij zorgt een generator er ook voor dat de mechanische energie wordt omgezet in elektriciteit.

Hydraulische turbines kunnen worden gebruikt voor het omzetten van de stromingsenergie van water in bijvoorbeeld elektriciteit. Deze stromingsenergie ontstaat als er een hoogte verschil tussen twee waterniveaus aanwezig is en het ene waterniveau naar het andere niveau kan stromen. Het water stroomt naar het laagste punt en creëert hierdoor stromingsenergie. De hydraulische turbine kan door deze stromingsenergie in beweging worden gebracht. Daardoor gaat de hydraulisch turbine draaien en ontstaat mechanische energie die weer in elektrische energie kan worden omgezet met behulp van een generator. Meestal zijn er in een waterkrachtcentrale meerdere hydraulische turbines aanwezig.

Turbine of compressor
In de techniek worden ook compressoren gebruikt. De werking hiervan is juist omgekeerd. Doormiddel van elektriciteit wordt een schoepenrad in beweging gebracht waardoor luchtdruk ontstaat. Deze luchtdruk kan worden gebruikt voor pneumatiek. Pneumatische systemen kunnen worden gebruikt om machines in beweging te brengen.

Wat is warmte-krachtkoppeling WKK en waarvoor wordt deze techniek gebruikt?

Warmte-krachtkoppeling is het benutten van de restwarmte die vrijkomt in de stoomkringloop wanneer stoomdruk wordt gebruikt voor het opwekken van elektriciteit. Deze restwarmte kan worden gebruikt voor verschillende doeleinden. Hieronder is in een aantal alinea’s uitgelegd hoe de stoomkringloop werkt voor het opwekken van elektriciteit. Daarna is aangegeven wat een warmte-krachtkoppeling is en waarom deze zo belangrijk is.

De stoomkringloop voor het opwekken van elektriciteit
In stoomketels wordt water verwarmt zodat stoom ontstaat. Deze stoom bevat een bepaalde druk die er voor zorgt dat  de stoom arbeid kan verrichten. Voor het opwekken van elektriciteit wordt de stoomdruk gebruikt om een aantal loopwielen die van schoepen zijn voorzien in beweging te brengen. De stoom drukt tegen de schoepen van de loopwielen aan zodat deze snel beginnen te draaien. Deze loopwielen met schoepen bevinden zich in de stoomturbine.

Deze stoomturbine is gekoppeld aan een generator. De generator wekt elektrische stroom op met een hoge spanning. De stoom die de schoepen in beweging heeft gebracht heeft in feite arbeid verricht. Nadat de stoom arbeid heeft verricht wordt ook wel gesproken over afgewerkte stoom. Deze afgewerkte stoom wordt weer afgekoeld. Hierdoor veranderd de stoom weer in water. Dit proces gebeurd doormiddel van condensors in een condensatieturbine. Deze bevat een aantal bundels met condensorpijpen. Koelwaterpompen zorgen er voor dat er koelwater door deze condensorpijpen wordt geperst. De afgewerkte stoom veranderd in water oftewel in condensaat wanneer deze in contact komt met de condensorpijpen. Dit condensaat wordt weer naar de ketel teruggebracht, die het vervolgens doormiddel van hitte weer in stoom verandert. De stoomkringloop is nu rond. Het koelwater dat door de condensorpijpen stroomt wordt echter warm door de afgewerkte stoom en wordt naar buiten getransporteerd.

Warmte-krachtkoppeling
In een stoomkringloop wordt slechts een deel van de opgewekte warmte gebruikt voor het opwekken van elektriciteit. Het elektrisch rendement van moderne elektriciteitscentrales is ongeveer zestig procent. De overige energie die in de stoomkringloop van deze centrales ontstaat komt vrij als warmte. Deze warmte wordt afgevoerd met het koelwater zoals in de vorige alinea is beschreven. Doormiddel van een warmte-krachtkoppeling kan deze warmte nuttig worden gebruikt. De warmte-krachtkoppeling wordt vaak afgekort met WKK en wordt gebruikt om de warmte uit de afgewerkte stoom te benutten voor verwarming en droging. Door de WKK kunnen woningen, fabrieken en utiliteit worden verwarmd. Een warmte-krachtkoppeling is een gecombineerde opwekking en productie van elektriciteit en warmte die nuttig wordt gebruikt. Doordat de warmte die vrijkomt uit de afgewerkte stoom wordt hergebruikt voor de verwarming van gebouwen hoeft men minder brandstoffen te verbranden om de gewenste temperatuur te bereiken. Hierdoor wordt brandstof bespaard. Dit is gunstig voor het milieu omdat minder brandstoffen worden verbrand en daarmee de CO2 uitstoot wordt beperkt. Daarnaast is het ook nog financieel aantrekkelijk.

Samenvatting: hoe werkt een warmte-krachtkoppeling?
Het gebruik van een warmte-krachtkoppeling zorgt er voor dat de afgewerkte stoom die de stoomturbine verlaat niet wordt gecondenseerd in een condensor. Het warme water dat de afgewerkte stoom bevat wordt hergebruikt voor bijvoorbeeld een centrale verwarming.