Wat is aanvoerstroom en retourstroom in de techniek?

Retourstroom is het geheel van het terugvloeien van elektrische-, vloeistof- en gasstromen in een bepaal systeem. Men heeft het in de techniek meestal over een aanvoerstroom en een retourstroom. Aanvoerstroom is het geheel van aangevoerde vloeistof-, elektrische- en gasstromen in een bepaald systeem. Omdat er in de techniek veel gebruik wordt gemaakt van elektriciteit, gas en vloeistoffen zijn er verschillende systemen te bedenken waarbij men de aanvoerstroom en retourstroom kan illustreren. Meestal heeft men een bron waar vandaan de aanvoerstroom op gang komt. Dat kan een accu zijn of een windturbine als het gaat om elektriciteit. Ook in de installatietechniek maakt men gebruik van een aanvoerstroom bijvoorbeeld van heet water vanaf de cv-ketel naar de radiatoren. Hieronder zijn een aantal voorbeelden nader omschreven.

Aanvoerstroom en retourstroom in elektrotechniek
In de elektrotechniek dan wordt doormiddel van de fasedraad de elektrische stroom (een stroom van elektronen) naar een bepaald apparaat, verlichtingseenheid of contactdoos getransporteerd. De elektrische stroom kan op verschillende manieren worden opgewekt bijvoorbeeld doormiddel van een kolencentrale of zoals steeds vaker gebeurd doormiddel van zonnepanelen en windturbines. Vanaf die stroomvoorzieningen kan elektrische stroom doormiddel van een elektriciteitsnetwerk worden getransporteerd. Dit is echter nog steeds de aanvoerstroom. Zodra de elektrische stroom een bepaalde bewerking heeft verricht in een apparaat, machine of werktuig gaat de resterende elektrische energie via een nuldraad retour. De retourstroom vindt dus plaats doormiddel van de nuldraad.

Aanvoerstroom en retourstroom in lastechniek
Dit werkt ook zo met elektrisch lassen waarbij de elektrische stroom door de lastoorts en laselektrode aangevoerd wordt tussen de laselektrode en het werkstuk ontstaat kortsluiting en een zogenaamde vlamboog die het werkstuk en de het lastoevoegmateriaal laat smelten. Omdat er sprake is van aanvoerstroom richting het werkstuk wordt een klem aangebracht op het geleidende werkstuk. Aan de klem zit een kabel om de elektrische retourstroom af te voeren van het werkstuk.

Aanvoerstroom en retourstroom in de installatietechniek
Ook in de installatietechniek gebruikt men de termen aanvoerstroom en retourstroom. Men heeft het dan over de aanvoerstroom en retourstroom van water. Als men bijvoorbeeld kijkt naar een radiator dan is er sprake van een aanvoerstroom van water en een retourstroom van water. De aanvoerstroom van water is door de cv-ketel verwarmd en zorgt er voor dat de radiator warm wordt. De aanvoerstroom van water komt aan de bovenzijde de radiator binnen. Nadat het water warmte heeft afgegeven in de radiator koel het af en gaat het via de retourstroom weer terug naar de ketel. Dit proces is vrijwel geheel gesloten. De aanvoerstroom en de retourstroom vormen en gesloten circuit.

Aanvoerstroom en retourstroom in spoorwegen en spoorwegtechniek
Een interessante vorm van elektrische aanvoerstroom en retourstroom treft men aan in de spoorwegen. Via elektrische hoogspanningskabels krijgen treinen elektrische voeding. Deze hoogspanningskabels zijn aangesloten op het onderstation. Dit is de aanvoerstroom van elektriciteit. De trein komt in beweging en dat kost (elektrische) energie. De trein verbruikt dus elektriciteit.

Niet alle elektriciteit wordt door een trein verbruikt. Een deel van de elektriciteit zal via de retourstroom worden weggevoerd. Deze retourstroom is het totaal van elektrische stromen die tussen het elektrische spoorwegmaterieel (treinen) en het onderstation door spoorstaven en mogelijk ook door retourstroomgeleiders terugvloeit. Ook bij treinen is dus sprake van aanvoerstroom en retourstroom.

Wat is handlassen?

Handlassen is werkwoord dat wordt gebruikt voor alle lasprocessen die door een lasser met de hand met behulp van een lastoorts worden uitgevoerd. Het handlassen is de tegenhanger van geautomatiseerd lassen. Bij geautomatiseerd lassen worden vaak lasrobots gebruikt, zoals laserlasrobots maar er zijn ook lasrobots die lasverbindingen maken met behulp van het TIG-lasproces en MIG/MAG-lasproces. Ook orbitaal lassen is een vorm van een geautomatiseerd lasproces. Bij OP-lassen (onder poederdek lassen) wordt ook in bepaalde mate gebruik gemaakt van geautomatiseerd lassen.

Al deze lasprocessen verschillen van handlassen omdat met handlassen de lasser zelf de toorts boven het smeltbad beweegt en zelf indien nodig lastoevoegmateriaal in het smeltbad aanbreng. Daardoor heeft een handlasser grote invloed op de kwaliteit van de lasverbinding. Een handlasser moet over een goede lastechniek beschikken.

Handlassen is vakwerk
In tegenstelling tot geautomatiseerde lasprocessen is lassen met de hand echt vakwerk. Dit houdt in dat de lasser over speciale (hand)vaardigheid moet beschikken. Lassers die bedreven zijn in handlassen zijn vakmensen. Het is overigens niet zo dat elke handlasser op dezelfde manier last. De snelheid waarmee ze lassen kan verschillen en ook de positie van de lastoorts ten opzichte van het smeltbad kan verschillen. Daarnaast kunnen handlassers ook hun lasapparaat op verschillende manieren instellen. Sommigen kiezen voor veel ampère om sneller te lassen en andere lassers kiezen juist voor wat minder ampères om langzamer en zorgvuldiger te lassen.

Een handlasser werkt overigens niet alleen met zijn of haar handen. Ze moeten ook goed nadenken over de warmte-inbreng in het werkstuk. Warmte zorgt namelijk voor vervorming en daarmee moet rekening worden gehouden. Vanwege de kwaliteitsnormen die steeds strenger worden moeten veel lasprocessen voldoen aan lasmethodekwalificaties. Deze lasmethodekwalificaties zijn bedrijfsgebonden. Vaak moet een lasser ook gekwalificeerd worden doormiddel van een lasserkwalificatie. Een handlasser leest in de lasmethodebeschrijving hoe de lasverbinding gemaakt dient te worden in het werkstuk. In deze lasmethodebeschrijving staat ook werk lastoevoegmateriaal gehanteerd moet worden en welk lasproces moet worden gebruikt. ook de laspositie is aangegeven.

Stereolassen
Stereolassen is een voorbeeld van een lasproces dat eigenlijk alleen met de hand kan worden uitgevoerd. Hierbij wordt gebruik gemaakt van twee TIG lassers die een groot RVS werkstuk moeten lassen. Hierbij wordt gebruik gemaakt van een inert beschermingsgas. Dit wordt aan de achterkant van de lasverbinding door een handlasser op het smeltbad aangebracht zodat het smeltbad beschermd wordt tegen schadelijke invloeden uit de omgeving en de atmosfeer. De andere handlasser maakt met zijn lastoorts het smeltbad en voegt met de hand het lastoevoegmateriaal toe. De twee handlassers die het stereolassen uitvoeren moeten echt vakmannen zijn die goed met elkaar kunnen samenwerken.

Handlassers zijn niet altijd allround
Een handlasser kan uit de hand lassen maar dat houdt niet in dat hij of zij elk lasproces kan uitvoeren. Er zijn bijvoorbeeld handlassers die uitstekend MIG/MAG kunnen lassen maar er zijn ook handlassers die goed TIG kunnen lassen. Deze lasprocessen zijn veel voorkomend en er zijn handlassers die beide lasprocessen beheersen hoewel ze wel in uitvoering en toepassing verschillen. Verder is lassen met beklede elektrode (BMBE) lassen een lasproces dat vaak met de hand wordt uitgevoerd. Ook autogeen lassen (met vlam) is een handlasproces.

Handlassen als tegenhanger van geautomatiseerd lassen
Ten opzichte van automatische lasprocessen heeft handlassen een aantal voordelen en nadelen. Handlassen biedt meer vrijheid voor de lasser. De lasser zal zelf zijn of haar lastoorts in positie moeten brengen en kan daardoor op plekken komen waar een grote lasrobotarm meestal niet bij kan. Voor moeilijk laswerk is daarom een handlasser geschikter dan een geautomatiseerd lasproces. Daarnaast moet een lasrobot geprogrammeerd worden en dat kost tijd. Daarom is een geautomatiseerd lasproces geschikter voor grotere series omdat men anders voor elk nieuw afwijkend product weer een nieuwe programmering moet invoeren.

Handlassen is echter wel een langzamer proces dan een geautomatiseerd lasproces. Daarom is handlassen weer minder geschikt voor grote series. Verder biedt een geautomatiseerd lasproces constant een bepaalde kwaliteit en dat kan bij handlassen verschillen omdat dat de kwaliteit van de handlassen in sterke mate afhankelijk is van de vaardigheden van de handlasser. Dat probeert men te ondervangen met lascertificaten die een lasser zou moeten behalen om aan bepaalde werkstukken te mogen lassen.

Wat is een allround lasser?

Een allround lasser is een lasser die verschillende lastechnieken beheerst en daardoor allround ingezet kan worden in het maken van lasverbindingen in verschillende materialen behulp van verschillende lasprocessen. In de metaaltechniek worden verschillende verbindingen toegepast. Men onderscheid hierin de uitneembare verbindingen zoals schroefdraadverbindingen en niet-uitneembare verbindingen waarbij de lasverbinding in de metaaltechniek het bekendste voorbeeld is. Het maken van lasverbindingen vereist kennis en vaardigheid.

Daarbij komt dat lasprocessen onderling sterk verschillen. Dat zorgt er voor dat lassers onderling ook verschillen. Er zijn lassers die veel ervaring hebben met MIG/MAG lassen maar er zijn ook lassers die goed TIG kunnen lassen. Ook BMBE (elektrode) lassen wordt nog veel toegepast. In de installatietechniek gebruikt men daarnaast ook nog het autogeen lassen waarbij men gebruik maakt van een vlam. Een allround lasser beheerst in de praktijk een aantal van de hiervoor genoemde lasprocessen. Lassers die alle gangbare (want er zijn er nog veel meer) lasprocessen beheersen zijn er bijna niet.

Een allround lasser of specialist
Iemand die zich een allround lasser noemt beheerst in de praktijk meestal MIG/MAG en TIG eventueel ook nog BMBE-lassen, dit is lassen met een beklede elektrode. Een lassers is pas allround als hij of zij met deze lasprocessen zelfstandig een werkstuk kan aflassen. Als een lasser ook nog een werkstuk kan samenstellen op basis van een tekening dan spreekt men ook wel over een samensteller lasser. Tekening lezen vereist echter technisch inzicht en niet alle tekeningen zijn gelijk.

Een allround samensteller lasser kan in de praktijk meerdere lasprocessen uitvoeren en kan een diversiteit aan tekeningen lezen zodat deze werknemer een werkstuk van het begin tot het einde in theorie zou moeten kunnen bouwen en aflassen. Allround samenstellers lassers zijn er in de praktijk bijna niet. Veel lassers specialiseren zich in het bouwen of basis van tekeningen of het aflassen.

Daarbij worden veel lassers ook nog gespecialiseerd in een bepaald lasproces en materiaal. Denk hierbij aan de gecertificeerde lassers die bijvoorbeeld dunwandige rvs-leidingen onder een hoeklas van 45 graden (HL-45 of positie G6) kunnen lassen. Deze lassers zijn meestal niet (meer) allround maar juist gespecialiseerde (af)lassers.

Hoe wordt ik een allround lasser?
Niet iedereen kan een allround lasser worden. De theorie met betrekking tot lassen is niet erg complex maar de vaardigheid echter wel. Lassers doen veel werk op basis van inzicht en gevoel en dat is niet voor iedereen weggelegd. Een lasser weet dat tijdens het lasproces warmte wordt ingebracht in het materiaal. Daardoor gaat het materiaal vervormen. Het ene lasproces brengt echter meer warmte in het werkstuk dan het andere. Daarnaast moet een TIG lasser met één hand de lastoorts bedienen om met een andere hand het toevoegmateriaal in het smeltbad te brengen. De lastoorts van een TIG-lasapparaat bevat een niet-afsmeltende wolfraam (tungsten) elektrode. MIG/MAG lassen is weer een heel ander proces waarbij gebruik wordt gemaakt van lasdraad dat automatisch wordt doorgevoerd vanuit het laspistool richting het werkstuk. Bij lassen met een beklede elektrode maakt men niet direct gebruik van een beschermgas, in tegenstelling tot de hiervoor genoemde lasprocessen. In plaats daarvan maakt men gebruik van een elektrode bekleding die tijdens het lassen verbrand waardoor een beschermgas vrij komt. De elektrode smelt dus af waardoor de lastoorts als het ware steeds korter wordt.

Een allround lasser heeft ervaring in meerdere van deze lasprocessen (en eventueel ook andere lasprocessen) en deze ervaring krijg je alleen door heel veel te oefenen. Lassen leer je vooral door te doen. Dit kan in de praktijk zijn maar ook op school als daar een praktijkruimte aanwezig is met verschillende soorten lastoestellen.

Waar werken allround lassers?
Er zijn specifieke bedrijven die regelmatig vacatures publiceren voor allround lassers. Dit zijn vooral bedrijven die verschillende producten maken van diverse materialen. Een bedrijf met een rvs-afdeling en een staalafdeling heeft bijvoorbeeld vaak behoefte aan een allround lasser die zowel MIG/MAG kan lassen voor het staal en TIG kan lassen voor het rvs. Ook bedrijven die werken als toeleverancier voor verschillende opdrachtgevers zoeken vaak flexibel inzetbare lassers in hun vacatures. Een allround lasser is vaak flexibel inzetbaar.

Helemaal mooi is het wanneer de allround lasser ook nog goed kan samenstellen waardoor hij of zij zelfstandig op bepaalde projecten kan worden ingezet. In de praktijk werken allround lassers vaak bij kleine metaalbedrijven. Bij grote metaalbedrijven zijn de lasprocessen vaak gespecialiseerder en werkt men bijvoorbeeld alleen op een rvs-afdeling om daar TIG te lassen of alleen op een staalafdeling om daar MAG (CO2) te lassen. In grote bedrijven wisselt men over het algemeen minder lassers uit tussen afdelingen terwijl dit bij kleinere bedrijven wel gebeurd als er een ander type product wordt gemaakt.

Wat is fotolassen en wat doet een fotolasser?

In de metaaltechniek hoor je soms de functienaam ‘fotolasser’ ook vraag men wel om lassers die kunnen ‘fotolassen’. Deze benaming is behoorlijk ingeburgerd in de metaalsector maar is behoorlijk vaag. Daarom is in dit artikel informatie gegeven over de termen fotolassen en fotolasser.

Wat is fotolassen?

Fotolassen is een werkwoord maar men kan eigenlijk niet zeggen dat iemand gaat fotolassen. Ook kan iemand niet zeggen zou je die fotolassen even kunnen maken.  De term fotolassen is enkel een benaming voor de kwaliteit waaraan bepaalde lassen moeten voldoen.

Als men het over fotolassen heeft bedoelt men dat de lassen aan bepaalde kwaliteitseisen moeten voldoen. Deze kwaliteitseisen zijn vastgelegd in een lasmethodebeschrijving. De lasmethodebeschrijving is geënt op de lasmethodekwalificatie die het bedrijf heeft behaald. In de lasmethodebeschrijving is vastgelegd hoe een las gemaakt moet worden en via welk lasproces de las gemaakt moet worden door de lasser. Daarin kan zijn vastgelegd dat de las fototechnisch gecontroleerd moet worden. De controle van de las kan namelijk door röntgenfoto’s worden gedaan.

Röntgenfoto’s van lassen

Doormiddel van röntgenfoto’s kan men controleren of de las inderdaad goed is aangebracht door de lasser. Met röntgenfoto’s kan men zien of er geen insluitingen of andere onzuiverheden in de las aanwezig zijn. Een fotolas is pas echt een fotolas als de las de röntgenfototest kan doorstaan. Een voordeel van röntgenfoto’s is dat men de las niet hoeft te vernietigen tijdens deze test. De las blijft in tact. Daarom noemt men deze onderzoeksmethode ook wel Niet Destructief Onderzoek. Dit wordt ook wel afgekort met NDO. Destructief Onderzoek kan ook worden uitgevoerd. Hierbij wordt de las bijvoorbeeld doorgezaagd of uitelkaar getrokjen met een trekproef of breekproef. Het spreekt voor zich dat de lasverbinding dan vernietigd is.

Wat doet een fotolasser?

Een fotolasser is in feite geen functieaanduiding. Iemand is geen fotolasser maar een lasser kan wel lassen leggen conform een lasmethodebeschrijving. Een lasser moet een lascertificaat behalen conform de lasmethodebeschrijving en de lasmethodekwalificatie van een bedrijf. Hiervoor dient de lasser een proefstuk maken met een onafhankelijke getuige er bij. Dit proefstuk wordt gecontroleerd in een speciaal testlab. Tijdens de testen wordt de las op verschillende manieren gecontroleerd.  De manier van controleren worden vastgelegd in het lascertificaat.  Hierin kan bijvoorbeeld staan dat eem breekproef is toegepast of dat men met geluidsgolven (ultrasoon) getest heeft. Ook testen doormiddel van röntgenfoto’s kunnen vastgelegd worden op het lascertificaat.  In het laatste geval zou men kunnen zeggen dat een lasser een las kan maken op fototechnisch niveau. Dan zou je kunnen spreken van een fotolas en een fotolasser.

Aandachtspunten bij het woord fotolasser

Als iemand op fotoniveau kan lassen weet je eigenlijk nog heel weinig. Want je moet weten welk lasproces is gebruikt bij het proefstuk waar de lasser zijn of haar certificaat mee heeft behaald.  Ook moet je weten welk materiaal is gelast en welke dikte dit materiaal had. De vorm van de lasnaad is ook belangrijk. Was dit bijvoorbeeld een V-naad, een X-naad of een K-naad. Het toevoegmateriaal is eveneens belangrijk is er bijvoorbeeld gebruik gemaakt van poedergevulde draad (rutiel), beklede elektrode of andere lasdraad. Dit alles wordt vastgelegd op het lascertificaat van de lasser. Bovendien staat op dit lascertificaat in welke positie de lasser de las heeft aan gebracht. Voorbeelden hiervan zijn onder de hand, uit de zij, stapelen en boven het hoofd. Een bijzondere positie die vaak vereist is in het leidinglassen is G6 of HL 45.

Hierbij moet de lasser een buis of pijp met een bepaalde wanddikte in een positie van 45 graden plaatsen en dan rondom lassen. Een fotolasser kan een mengeling van bovenstaande gegevens op xijn lascertificaat hebben staan. Daarom weet je met de term fotolasser niet precies wat de lasser kan en mag lassen. Als men om een fotolas of fotolasser vraagd zal je altihd moeten nagaan welke lascertificaten precies vereist zijn. Daarbij is ook nog een verschil of de las conform de Europese Normering is gelegd, dit wordt aangeduid met EN, of de Amerkaanse normering welke wordt aangedijd met AWS.

Wat is rutiel en waar wordt rutiel voor gebruikt?

Rutiel is een materiaal met een chemische formule TiO2. Het materiaal rutiel is de meest algemene vorm van titanium-oxide. Naast rutiel komen er nog twee andere vormen voor van TiO2, dit zijn brookiet en anataas.

Eigenschappen van rutiel
Rutiel is een watervrije van titanium. Bij dit materiaal komen veel tweelingen voor. De symmetrie is  tetragonaal, ribben a = 45.93 nm (nanometer), c = 29.59 nm. De chemische samenstelling van rutiel kan sporen van ijzer bevatten. Daarnaast kan rutiel ook sporen van tantaal of niobium bevatten. Over het algemeen is de samenstelling van rutiel TiO2.

Waar om rutiel voor?
Rutiel is een materiaal dat in veel verschillende metamorfe en stollingsgesteenten voor kan komen. De hoeveelheid rutiel in gesteenten is over het algemeen beperkt. Rutiel is daarnaast een belangrijk ertsmineraal voor  (Ti). In sommige zware-mineraal zanden is zoveel rutiel aanwezig dat men er rutiel uit kan winnen.

Waar wordt rutiel voor gebruikt?
Een belangrijke industriële toepassing waar men rutiel voor gebruikt is las-elektrodes. Hierbij kan men rutiel toepassen in de bekleding van laselektrodes. Deze elektrodes bevatten siliciumdioxide in combinatie met titanium(IV)oxide (dit is in feite rutiel). Daarnaast kunnen bij bepaalde lasprocessen  rutiel gevulde toevoegdraden worden toegepast. Ver der wordt bij het zogenoemde Onder Poederdek lassen (OP-lassen)  vaak gebruik gemaakt van poeders die rutiel bevatten.

Rutiel wordt in de bekleding van elektrodes en laspoeder toegepast om het smeltbad van de las te beschermen en een slak te vormen op de lasnaad. Hierdoor is de lasnaad beschermd tegen chemische invloeden uit de lucht. Deze chemische invloeden kunnen de kwaliteit van de nadelig beïnvloeden. Daarnaast zorgt de slak er voor dat het smeltbad minder snel stolt waardoor de kans op krimpscheuren wordt verkleind.

Wat wordt bedoelt met slak bij lasprocessen?

Het woord ‘slak’ wordt regelmatig gebruikt bij lasprocessen. Dit woord heeft niets met een dier of een aanduiding van snelheid. Ook heeft de slak die vrijkomt bij lasprocessen niets te maken met de zogenoemde hoogovenslak die vrijkomt bij het smelten van ertsen en metalen in hoogovenprocessen. In plaats daarvan heeft het woord ‘slak’ bij lasprocessen te maken met een materiaal dat vrij kan komen bij het lasproces. De slak die hierbij vrij kan komen is een bros materiaal dat een beetje glasachtig is. De slak bij lasprocessen kan bestaan uit verschillende materialen. Het ontstaan van een slak tijdens het lasproces kan gewenst zijn maar ook ongewenst.

Hoe ontstaat slak bij lasprocessen?
Niet bij alle lasprocessen ontstaat een slak. Een slak ontstaat bij lasprocessen waarbij gebruik wordt gemaakt van laspoeder zoals bij onder poederdek lassen (OP-lassen) of bij beklede elektrodelassen (BMBE lassen). Hierbij ontstaat de slak als een restproduct of afvalproduct. Het laspoeder of de elektrodebekleding smelt door de hitte van het lasproces. Dit materiaal gaat als het ware op het smeltbad drijven en is in eerste instantie vloeibaar. Wanneer de las afkoelt is ook de slak afgekoeld en wordt de slak zichtbaar in de vorm van een harde breekbare brosse laag. De slak kan zich stevig hechten op de lasnaad maar het is ook goed mogelijk dat de slak als het ware achter de lastoorts weg krult.

Bij welke lasprocessen ontstaat slak?
Hiervoor zijn al een aantal lasprocessen genoemd waarbij slak kan ontstaan. Er zijn lasprocessen waarbij men opzettelijk een slak produceert om de las te beschermen tegen invloeden van buitenaf. Voorbeelden van dergelijke lasprocessen zijn:

  • BMBE lassen, lassen met beklede elektrode
  • Onder Poederdek lassen, OP-lassen
  • Elektroslaklassen
  • Exothermisch lassen
  • Lassen met poedergevulde draad,

Als men geen gebruik maakt van elektrodebekleding of poeder maar een beschermgas of vacuüm toepast, is de kans op het ontstaan van een slak kleiner. Bij het MIG/MAG lassen kan nog wel eens een slak ontstaan. In dit geval ontstaat de slak niet uit toevoegmateriaal maar uit verontreinigingen die aanwezig waren in de laskanten van de werkstukken. Deze verontreinigingen kunnen bijvoorbeeld vuil en oxide zijn. Ook door het verbranden van het lasmateriaal kan een slak ontstaan. Het verbranden van lasmateriaal gebeurd als het lasproces onvoldoende is beschermd.

Wat is het nut van een slak bij lasprocessen?
Hiervoor zijn een aantal lasprocessen genoemd waarbij opzettelijk een slak wordt geproduceerd tijdens het lasproces. Er zijn een aantal redenen waarom er bewust voor wordt gekozen om tijdens het lassen een slak te produceren. Een slak is allereerst een bijproduct dat slechts van tijdelijke aard is. De slak wordt na uitharding meestal meteen verwijdert door de lasser of nabewerker. Dit verwijderden van de slak kan doormiddel van het wegbikken van de slak met een beitel.

Tijdens het lassen heeft de slak een belangrijk nut omdat deze het smeltbad beschermd tegen ongewenste invloeden rondom het lasproces. De slak beschermd met name het smeltbad tegen verbranding tegen inwerking van stikstof uit de omringende lucht. Daarnaast heeft de slaklaag ook een isolerende werking die er voor zorgt dat de lasnaad minder snel afkoelt.

Door zure of rutiele lastoevoegmaterialen kan de oppervlaktespanning van het smeltbad worden verlaagd. Hierdoor vloeit de las mooi en wordt deze glad. De slak kan ook een ondersteunende functie hebben bij het verticaal of bovenhands lassen. Door de slak kan worden voorkomen dat het smeltbad omlaag gaat stromen voordat de las gestold is. Dit komt door basische toevoegmaterialen.

Ongewenste effecten van slak
Een slak kan gewenst zijn maar er kunnen ook fouten in de las terecht komen doordat er een slak wordt gevormd. Een slak of delen van de slak kunnen namelijk tijdens het lassen ingesloten worden in het smeltbad. Deze insluitingen behoren tot de lasfouten omdat de las op de plaatsen van de insluitingen niet solide is.

Een ander nadeel van de slak is dat deze verwijdert moet worden en dat is arbeidsintensief. De las moet worden nabewerkt met een beitel.

Wat wordt in de lastechniek bedoelt met backinggassen en onderlegstrips?

Een lasverbinding kan op verschillende manieren worden gemaakt. Er zijn bij het maken van een lasverbinding een aantal factoren van belang. Voordat men een bepaald lasproces kiest zal men eerst moeten nagaan welk materiaal gelast moet worden en wat de dikte van dat materiaal is. Het materiaal is meestal een metaalsoort (ferro  of non-ferro) en beschikt over bepaalde eigenschappen zoals sterkte en weerstand tegen oxidering. Deze eigenschappen zorgen er voor dat een bepaald lasproces juist wel of juist niet geschikt is voor het maken van een lasverbinding. Voorbeelden van lasprocessen zijn MIG/MAG, TIG, BMBE en autogeen lassen. Daarbij kan gebruik worden gemaakt van verschillende toevoegmaterialen die meestal in draadvorm worden aangebracht.

Voor lassen gebruikt men een gas. Dit kan een inert gas zijn of een actief gas. Een inert gas gaat geen of nauwelijks reactie aan met stoffen in de omgeving terwijl een actief gas dat wel doet. Bij MIG en TIG lassen wordt bijvoorbeeld gebruik gemaakt van een inert gas de letters ‘IG’ maken dat duidelijk. Dit inerte gas beschermd de las aan de voorkant waar de lasser met de lastoorts en het beschermgas last. De achterzijde van de las wordt tijdens het lasproces niet beschermd tenzij men gebruik maakt van zogenoemde backinggassen of onderlegstrips.

Wat is backinggas?
Backinggas is een beschermgas. Hiervoor kan bijvoorbeeld het inerte gas argon worden gebruikt maar dit gas is vrij prijzig. Daarom kiest men ook vaak voor zogenoemde formeergassen. Dit zijn mengsels die bestaat uit stikstof en waterstof. Het backinggas wordt aan de achterkant van het werkstuk aangebracht en zorgt er voor dat er geen ongewenste chemische reacties optreden tijdens het lasproces. Hierdoor kan het lasproces goed gecontroleerd en snel verlopen. Daarnaast zorgt het backinggas er voor dat het werkstuk wordt gekoeld en dient het backinggas ter ondersteuning van het smeltbad.

Wat zijn onderlegstrips?
In sommige gevallen maakt men gebruik van onderlegstrips als men gaat lassen. Deze onderlegstrips kunnen van verschillende materialen gemaakt zijn. Voorbeelden van materialen die worden gebruikt voor onderlegstrips zijn koper, staal of keramiek. Sommige lassers spreken wel over lassen op steentjes of op keramische strips.  Over het algemeen worden deze strips gebruikt bij grote lasverbindingen en lange brede lasnaden. Een onderlegstrip zorgt er voor dat het smeltbad niet te ver naar beneden wegzakt. De onderlegstrip houdt dit smeltbad namelijk tegen. Niet alle onderlegstrips kunnen na het lasproces makkelijk verwijdert worden. Keramische en koperen onderlegstrips kunnen meestal eenvoudig worden weggehaald maar stalen onderlegstrips gaan een verbinding aan met het smeltbad en kunnen daardoor na het uitharden van de las net meer worden verwijdert en vormen dus onderdeel van het werkstuk.

Welke insluitsels kunnen in lasfouten aanwezig zijn?

Tijdens het maken van een lasverbinding kunnen verschillende fouten ontstaan. Het maken van een goede lasverbinding is niet eenvoudig. Een lasverbinding wordt pas goed als aan verschillende factoren is voldaan. Zo moet het juiste lasproces worden toegepast, dit kan bijvoorbeeld autogeen, MIG/MAG, TIG en BMBE lassen zijn. Er zijn echter nog verschillende andere lasprocessen. Elk lasproces heeft zijn eigen unieke eigenschappen. Zo wordt er bij sommige lasprocessen inerte gassen gebruikt terwijl bij andere lasprocessen actieve gassen worden gebruikt. Lasprocessen zoals autogeen lassen wordt gedaan doormiddel van een vlam terwijl MIG/MAG lassen doormiddel van een elektrische boog wordt gedaan. De vlam of de elektrische boog zorgt er voor dat er veel hitte ontstaat zodat het basismateriaal van het werkstuk smelt en het lastoevoegmatiaal ook.

Metaalinsluitselsin het smeltbad
Zowel het basismateriaal als het toevoegmateriaal versmelten samen in een smeltbad. Na uitharding van het smeltbad ontstaat een stevige verbinding. Door verkeerde invloeden kan het smeltbad echter niet goed gevormd worden of ontstaan er problemen bij het stollen. Dit kan leiden tot scheuren en andere problemen. Fouten die ontstaan tijdens het lassen worden ook wel lasfouten genoemd. Naast scheuren kunnen onder andere ook insluitsels voor problemen zorgen als deze ontstaan tijdens het lasproces. Hieronder zijn een aantal voorbeelden genoemd van soorten insluitsels die kunnen ontstaan tijdens het lassen in het smeltbad.

Slakinsluitsels
Soms worden meerdere lassen over elkaar heen aangebracht. Bij sommige lassen zoals BMBE lassen ontstaat een slak op de las. Deze las dient na afloop van het lassen goed te worden verwijdert. Dit doet men door de slak los te bikken. Als men de las niet goed wegbikt kunnen delen van de slak in de nieuwe laslaag worden ingesloten. Deze insluitingen worden ook wel slakinsluitsels genoemd. Slakinsluitsels kunnen ook ontstaan wanneer de lasser op een verkeerde manier last.

Poederinsluitsels
Bij sommige lasprocessen wordt gebruik gemaakt van laspoeders.  Dit wordt onder andere gedaan bij onder poederdek lassen, dit lasproces wordt ook wel OP-lassen genoemd. Ook bij elektroslaklassen wordt gebruik gemaakt van laspoeders. Poederinsluitsels kunnen tijdens deze lasprocessen worden veroorzaakt als een veel te grote hoeveelheid laspoeder op de lasboog wordt gestrooid. Meestal wordt bij OP-lassen een teveel aan laspoeder opgezogen of door de OP-lasser verwijdert. Als dit niet gebeurd kan een nieuwe las die over de vorige las heen wordt aangebracht vervuild raken met poederinsluitsels. Daarom moet een lasnaad altijd goed schoon worden gemaakt als men meerdere lassen over elkaar heen aanbrengt.

Metaalinsluitsels
Het smeltbad moet tijdens het lasproces goed in de gaten worden gehouden door de lasser. De lasser dient tijdens de voorbewerking op het lassen een schone lasnaad te maken zodat het smeltbad niet vervuild kan worden. Tijdens het lassen kan het smeltbad vervuild raken met andere metalen dan het metaal dat wordt gebruikt als toevoegmateriaal en het metaal van het werkstuk. Metalen die niet goed meesmelten in het smeltbad kunnen ingesloten worden. Hierdoor ontstaan metaalinsluitsels. Deze insluitsels kunnen bijvoorbeeld koper bevatten van de koperen smeltbadondersteuning of wolfraam door het afbreken van de TIG-laselektrode.

Waarom zijn insluitsels lasfouten?
Insluitsels veranderen de structuur van de las. De las wordt op de plek van een insluitsel minder dicht en daardoor bestaat de kans op een scheur in de las als de las onder druk komt te staan. Insluitsels zijn lasfouten die de mechanische stevigheid van de las benadelen. Voor bepaalde constructies en werkstukken zijn insluitsels niet erg. Dit is bijvoorbeeld het geval bij constructies die niet zwaar belast worden of voor de sier worden gemaakt. Bij dragende constructies of constructiedelen moeten de lassen echter van perfecte kwaliteit zijn. Insluitsels mogen hierbij niet voorkomen. Daarom worden deze lassen over het algemeen gekeurd onder strenge normen. Deze gecertificeerde lassen worden regelmatig destructief of niet-destructief (NDO) gekeurd. De manier waarop een las gekeurd moet worden staat in de lasmethodebeschrijving.

Welke soorten scheuren kunnen ontstaan tijdens lasprocessen?

Een lasverbinding is een verbinding die permanent is. Verbindingen die doormiddel van een las tot stand worden gebracht kunnen niet eenvoudig uitelkaar worden gehaald. Doormiddel van lassen worden twee materialen in elkaar versmolten eventueel met behulp van toevoegmateriaal. Het versmelten van de materialen gebeurd doorgaans onder een hoge temperatuur. Deze temperatuur wordt doormiddel van een vlam of een elektrische lasboog op het gewenste niveau gebracht. Aan elke lasverbinding worden eisen gesteld. Bij sommige lasverbindingen zijn de eisen niet heel hoog. Dit is bijvoorbeeld het geval bij constructies die niet zwaar belast worden. Er zijn echter ook constructie die zeer zwaar belast worden bijvoorbeeld kranen in de offshore. Hiervoor zijn zeer zware eisen opgesteld.

Lasmethodebeschrijving of Welding Procedure Specification
De eisen waaraan een lasverbinding moet voldoen staan in een lasmethodebeschrijving LMB of Welding Procedure Specification WPS. Deze beschrijvingen zijn geënt op de lasmethodekwalificatie van het desbetreffende bedrijf. In de LMB of het WPs staat duidelijk beschreven aan welke lasprocedure de lasser zich moet houden bij het maken van de las. Hierbij is aandacht voor de voorbewerking, het daadwerkelijke lassen en de nabewerking.

De voorbewerking voor het lasproces
De voorbewerking is van groot belang omdat sommige metaalsoorten voorverwarmd moeten worden in verband met het optreden van scheuren tijdens en na het lassen. Ook het snijden of slijpen van lasnaden is een belangrijk aspect van de voorbewerking. Daarnaast dient de lasnaad goed schoongemaakt te worden en dient de lasser er alles aan te doen om een goed ‘lasklimaat’ te creëren. Dit houdt in dat de lasser bij bepaalde lasprocessen moet voorkomen dat er tocht, vocht of vuil bij het smeltbad kan komen.

Het lassen
De lasser dient de lasmethode toe te passen die is voorgeschreven in de LMB of WPS. Dit kan bijvoorbeeld MIG/MAG, TIG, OP-lassen of  BMBE lassen zijn. Er zijn echter nog vele andere lasprocessen die in de praktijk worden gebruikt. Daarbij moet ook rekening worden gehouden met de juiste (bescherm)gassen en de toevoegmaterialen. Verder dient de lasser ook rekening te houden met de laspositie, de A-hoogte en het aantal lagen waarin gelast moet worden.

De nabewerking
Ook de nabewerking heeft een invloed op de kwaliteit van de las. Sommige lassen moeten zorgvuldig worden afgekoeld. Dit moet niet te snel gebeuren in verband met het ontstaan van scheuren. Daarnaast kunnen er bij bepaalde lasprocessen lasspetters ontstaan die verwijdert moeten worden. Dit is bijvoorbeeld het geval bij MIG/MAG lasprocessen. Bij sommige andere lasprocessen zoals BMBE lassen kan een ‘slak’ ontstaan op de las. Deze ‘slak’ dient zorgvuldig verwijdert te worden. Het verwijderen van de ‘slak’ is al helemaal belangrijk wanneer er nog een las over de bestaande las heen wordt aangebracht.

Lasfouten
Tijdens het lassen kunnen echter fouten ontstaan. Deze fouten worden ook wel lasfouten genoemd en kunnen zowel in de voorbewerking, tijdens het lassen en in de nabewerking ontstaan. Lasfouten kunnen ernstige gevolgen hebben voor de mechanische stevigheid van een constructie. Er zijn verschillende lasfouten die kunnen ontstaan. Voorbeelden hiervan zijn kraters, insluitingen, randinkarteling en scheuren.

Scheurvorming tijdens het lassen
Tijdens het lassen kunnen scheuren ontstaan. Deze scheuren ontstaan waar het materiaal uit elkaar wordt getrokken. Dit uit elkaar rekken en trekken van materiaal kan onder andere gebeuren door temperatuurswisselingen. Een scheur in een lasverbinding zorgt er voor dat de kwaliteit van de las wordt aangetast. Dit is afhankelijk van de omvang van de scheur, de dikte van het materiaal en de druk die wordt uitgeoefend op de constructie. Scheuren kunnen soms worden gerepareerd door de scheur mechanisch te verwijderen doormiddel van slijpen of gutsen. Daarna dient men een nieuwe lasnaad aan te brengen en deze zorgvuldig dicht te lassen conform de lasmethodebeschrijving of Welding Procedure Specification.

Er zijn verschillende soorten scheuren die kunnen ontstaan tijdens het lassen. De oorzaken van de scheuren zijn eveneens verschillend. Hieronder worden in een aantal alinea’s voorbeelden gegeven van soorten scheuren die kunnen ontstaat tijdens en na het lasproces.

Stollingsscheuren
Een soort scheuren die kunnen ontstaan tijden het lasproces zijn zogenoemde stollingsscheuren. Deze scheuren worden ook wel h/b scheuren genoemd. Hierbij staan de letters ‘h/b’  voor ‘hoogte’ en ‘breedte’ waarmee de verhoudingen tussen de hoogte en de breedte worden bedoelt. Deze stollingsscheuren ontstaan wanneer de hoogte van de las groter is dan de breedte van de las. Tijdens het stollen van de las kan een scheur ontstaan doordat de las langzaam van buiten naar binnen stolt. Als de las hoog is zal daardoor een groot temperatuurverschil kunnen ontstaan tussen de buitenkant van de las en de binnenkant van de las. Als er in een las verontreinigingen aanwezig zijn met een lager smeltpunt dan het lasmateriaal kunnen deze verontreinigingen naar binnen worden getrokken. Als er meerdere verontreinigingen bij elkaar in de buurt zitten kan deze plek tijdens het stollingsproces voor problemen zorgen. Door de krimpspanning of door een belasting van de constructie kan een scheur bij de verontreinigingen ontstaan. Deze scheur is echter niet altijd direct zichtbaar aan de buitenkant. De scheur kan door röntgenonderzoek worden ontdekt. Röntgenonderzoek is een variant van niet- destructief onderzoek NDO.

Waterstofscheuren
Bij harde metaallegeringen kunnen waterstofscheuren optreden. Deze scheuren ontstaan wanneer er tijdens het lassen veel waterstof in de las wordt opgenomen. De waterstofscheuren ontstaan onder andere door trekspanningen. De scheuren hoeven niet meteen te ontstaan tijdens het lassen en kunnen zelfs 48 na het afronden van het lasproces gevormd worden. Hoe waterstofscheuren precies ontstaan is nog niet helemaal bekend. Men vermoed dat waterstof diffundeert naar insluitsels en poriën en dat daar waterstofgas wordt gevormd. Dit waterstofgas zou voor grote druk zorgen waardoor materiaal uit elkaar wordt gedrukt. Waterstofscheuren kunnen worden voorkomen door lastoevoegmateriaal met weinig waterstof te gebruiken. Daarnaast dient de lasser tijdens de voorbewerking de lasnaad goed schoon te maken. in de nabewerking moet de lasser het materiaal of werkstuk nagloeien. Deze aspecten van het lasproces staan meestal in de lasmethodebeschrijving / Welding Procedure Specification.


Door warmtebehandeling kunnen spanningsvrijgloeischeuren ontstaan. Deze scheuren worden ook wel intergranulaire scheuren genoemd. Door deze scheuren ontstaat carbide-precipitatie. Het inwendige van de aanwezige korrels wordt door dit proces versterkt. Daarnaast segregeren onzuiverheden zoals S, P, Sn, As naar de grenzen van de korrel, hierdoor worden deze verzwakt. Langs de grenzen van de korrel treed de meeste vervorming op. Door deze vervorming kunnen scheuren ontstaan.

Lamellaire scheuren
Als in het lasmetaal niet-metallische insluitsels aanwezig zijn kunnen lamellaire scheuren ontstaan. Deze scheuren worden gevormd in de fabriek waar het metaal wordt vervaardigd. Tijdens het gieten van metaal in een vorm kan verontreiniging in het metaal terecht komen. Deze verontreiniging kan bijvoorbeeld een deel van de ‘slak’ zijn die bij het smeltproces van ijzer en ijzererts op het gesmolten staal drijft. Als de lasser een lasverbinding maakt op de hoogte van de verontreiniging in het metaal zal de verontreiniging door de uitwerking van de krimpspanning gaan splijten en inscheuren. Tegenwoordig wordt staal meestal vervaardigd met een continu-gietproces. Hierdoor wordt de kans op verontreinigingen beperkt en komen lamellaire scheuren bijna niet meer voor.

Wat zijn lasfouten en hoe ontstaan lasfouten?

Tijdens lassen worden verschillende materialen aan elkaar vast gesmolten. Hierbij kan gebruik worden gemaakt van verschillende lasprocessen. Bekende lasprocessen zijn lassen met beklede elektrode (BMBE lassen), MIG/MAG lassen en TIG lassen. Naast deze lasprocessen zijn er nog vele andere lasprocessen die worden gebruikt in de metaaltechniek. Elk lasproces heeft zijn eigen specifieke kenmerken. Bij lassen wordt gebruik gemaakt van een plasmaboog of een vlam om voldoende hitte te creëren voor het smeltbad van het lasproces. Daarnaast worden bij lassen ook bepaalde inerte en actieve gassen gebruikt. Dit verschilt echter per lasproces. Het lastoevoegmateriaal is ook een belangrijk aspect van het lasproces. Al deze verschillende aspecten worden beschreven in een lasmethodebeschrijving LMB of een Welding Procedure Specification WPS. Tijdens het lassen kunnen echter fouten ontstaan.

Lasfouten
In bovenstaande inleiding is beschreven welke factoren onder andere aan de orde kunnen komen wanneer men gaat lassen. Er zijn verschillende lasprocessen en verschillende materialen die gelast kunnen worden. Lassen wordt meestal gedaan onder hoge temperaturen. Hierdoor worden materialen zeer snel opgewarmd en koelen ze daarna weer af. Hierdoor ontstaan structuurveranderingen, krimp en spanningen. De reactie van materialen op het lasproces en het gebruikte gas is verschillend. Omdat er zoveel verschillende aspecten zijn die invloed hebben op het lasproces bestaat er een kans op fouten. Er zijn veel verschillende fouten die kunnen ontstaan, deze fouten worden ook wel lasfouten genoemd en kunnen in elk lasproces optreden.

Hoe ontstaan lasfouten?
Lasfouten ontstaan doordat de lasser in het voorbereidend werk, tijdens het lassen of in de nabehandeling foutief gehandeld heeft of gebruik heeft gemaakt van ondeugdelijke materialen en gereedschappen. Een lasser kan bijvoorbeeld het lastoestel verkeerd hebben ingesteld waardoor teveel warmte wordt ingebracht en er inbrandingen ontstaan. Ook de positie van de toorts is van groot belang. Als de toorts te ver bij het smeltbad vandaan wordt gehouden kunnen insluitingen in de las ontstaan waardoor de las aanzienlijk van minder goede kwaliteit wordt.

Veel lasfouten kunnen worden voorkomen door de lasser wanneer hij of zij de lasmethodebeschrijving of Welding Procedure Specification goed leest en de aanwijzingen daarin nauwkeurig opvolgt. Er zijn echter ook externe factoren die de kans op lasfouten kunnen vergroten. Hierbij kan men bijvoorbeeld denken aan vocht, tocht, wind en temperatuurwisselingen. Ook stof en ander vuil kunnen van invloed zijn op de kwaliteit van de las.

Gevolgen van lasfouten
De oorzaken van lasfouten zijn divers en de gevolgen van d lasfouten zijn eveneens verschillend. Ook de ernst van de fouten is verschillend. Lasfouten kunnen bijvoorbeeld alleen invloed hebben op het uiterlijk van de las. Door deze lasfouten kan de las minder mooi lijken maar kan de las nog wel sterk genoeg zijn. Het uiterlijk van een las kan vaak doormiddel van nabewerking worden verbetert. Hierdoor kunnen eventuele lasfouten aan het oppervlak worden weggewerkt.

Een lasfout kan echter ook grote gevolgen hebben. Een lasfout kan bijvoorbeeld ook een scheur zijn die in de las. Voorbeelden van scheuren die in een las kunnen ontstaan zijn:

  • Stollingsscheuren of h/b scheuren
  • Lamellaire scheuren
  • Spanningsvrijgloeischeuren
  • Waterstofscheuren

Een scheur in een lasverbinding zorgt er voor dat de lasverbinding minder stevig is, de kans op het doorscheuren van een lasverbinding is dan aanwezig. Vooral wanneer de las onderdeel uitmaakt van een dragende constructie brengt een scheur ernstige risico’s met zich mee voor de stevigheid van het geheel.

Opsporen van lasfouten
Er zijn verschillende methodes waarmee men lasfouten kan opsporen. Deze opsporingsmethodes kunnen worden onderverdeeld in destructief onderzoek (DO) en niet destructief onderzoek (NDO). Bij destructief onderzoeken van lasverbindingen wordt de las daadwerkelijk vernietigd. Het product of werkstuk is daardoor niet meer bruikbaar. Daarom doet men destructief onderzoek meestal op basis van steekproeven. Tijdens destructief onderzoek kan een lasverbinding bijvoorbeeld worden doorgezaagd. Hierdoor kan men de zaagsnede goed bekijken en zien of er scheuren of insluitingen aanwezig zijn. Het spreekt voor zich dat de lasverbinding door het zagen compleet is verwoest en dat het werkstuk daardoor niet meer bruikbaar is.

Niet destructief onderzoek wordt tegenwoordig ook regelmatig toegepast. Hierbij wordt het werkstuk niet vernietigd. De meest eenvoudige vorm van niet destructief onderzoek is het visueel beoordelen van de las met ‘het blote oog’. Hierbij kan men onder andere letten op randinkarteling, inbrandingen en het uitzakken van de las.

Andere vormen van niet destructief onderzoek wordt met behulp van apparatuur gedaan. Hierbij kan men bijvoorbeeld gebruik maken van röntgenonderzoek of echografie. Bij röntgenonderzoek worden röntgenfoto’s gemaakt van de las en bij echografie wordt gebruik gemaakt van geluidsgolven. Van de onderzoeksresultaten worden rapporten opgesteld waarmee de kwaliteit van de onderzochte las inzichtelijk kan worden gemaakt.

Wat is een European Welding Technologist EWT en wat voor werk doet deze?

European Welding Technologist EWT is een oude term voor een lastechnicus. Tegenwoordig wordt de functiebenaming Middelbaar Lastechnicus (MLT) gebruikt, de internationale functiebenaming hiervoor is International Welding Specialist, dit wordt ook wel afgekort met IWT. Iemand geldig EWT papieren heeft tegenwoordig in feite IWT papieren. De waarde van deze papieren op de arbeidsmarkt is gelijk zolang de EWT-er of IWT-er tijdens zijn of haar loopbaan er voor gezorgd heeft dat de papieren niet zijn verlopen.

Wat voor werk doet een EWT, IWT of een MLT?
Iemand met geldige EWT, IWT of MLT papieren kan in de werktuigbouwkunde of metaaltechniek verschillende functies uitoefenen. Een lastechnicus heeft veel verstand van lasprocessen en de normeringen die daarbij horen. Door deze kennis is een lastechnicus een waardevolle medewerker voor een bedrijf. Meestal werkt een lastechnicus in het middenkader van een bedrijf als een adviseur, inspecteur of medewerker kwaliteit. Een lastechnicus kan ook worden ingezet als lascoördinator. De lascoördinator controleert of de lasverbindingen binnen een bedrijf worden gemaakt volgens de normen.

Deze normen kunnen zowel Europese normen (EN) zijn als Amerikaanse Normen (ASME). Veel bedrijven in de werktuigbouwkunde werken onder één of meerdere normen. Deze normen stellen eisen aan de laskwaliteit. Bedrijven moeten hun lasmethodes kwalificeren. Doormiddel van lasmethodekwalificaties wordt duidelijk onder welke normen er binnen een bedrijf mag worden gelast. De lastmethodes die gekwalificeerd zijn worden vervolgens weer verwerkt in een lasmethodebeschrijving of een WPS (Welding Procedure Specification).

Een EWT, IWT of een MLT heeft veel kennis over lasprocessen
Een middelbaar lastechnicus heeft voldoende kennis om de lasprocessen in een lasmethodebeschrijving of WPS te beschrijven. Daarnaast weet een middelbaar lastechnicus ook welke normeringen bij bepaalde projecten horen. Hierdoor is de MLT een belangrijke vraagbaak voor een werktuigbouwkundige bedrijven.

Een lastechnicus heeft voldoende kennis om adviezen te gegeven over lasprocessen. Hij of zij weet welke verschillende soorten lasnaden gebruikt kunnen worden en welke lasprocessen gebruikt kunnen worden. hierbij kan gedacht worden aan MIG/MAG, TIG en BMBE lassen. Er zijn echter nog vele andere lasprocessen die door een lasser uitgevoerd kunnen worden. Elk lasproces heeft specifieke eigenschappen die het lasproces juist wel of juist niet geschikt maken voor een bepaald project. Een middelbaar lastechnicus kan hier over het algemeen goed over adviseren.

Daarnaast kan deze specialist ook goed adviseren over de lasnaden en bijbehorende vooropeningen die gemaakt moeten worden. Verder is voorstoken bij sommige lasprocessen vereist. Meestal gaat het hierbij om speciale metalen of plaatdiktes. De temperatuur van de plaat moet tijdens het lassen op het gewenste niveau zijn andere ontstaat geen stevige verbinding of gaat de plaat zelfs scheuren. Daarom weet een middelbaar lastechnicus meestal ook wat de voorstooktemperatuur is van de projecten die gelast moeten worden. Een middelbaar lastechnicus zal voortdurend nieuwe lastechnieken moeten leren en de ontwikkelingen op lastechnisch gebied moeten volgen.

Een MLT, EWT of IWT kan ook worden ingezet voor het controleren van lassen. Dit zal meestal in eerste instantie visueel gebeuren. Daarbij kan bijvoorbeeld gekeken worden of er geen randinkarteling is en of de doorlas goed is gemaakt. Het echte onderzoeken van lassen gebeurd meestal in een speciaal onderzoeklaboratorium. Hierbij kan de las zowel destructief als niet-destructief worden onderzocht. Bij destructief onderzoek wordt het werkstuk tijdens het onderzoeken van de las vernietigd en bij niet-destructief onderzoek blijft het werkstuk behouden.

Moet een middelbaar lastechnicus ook lassen?
Meestal is een middelbaar lastechnicus een middenkader functie. Deze persoon kan adviseren en coördineren op lasgebied. Het is over het algemeen wel belangrijk dat een lastechnicus verstand heeft van de praktijk wanneer deze daarover moet adviseren. Veel lastechnici kunnen daarom zelf ook lassen omdat ze dit op een opleiding hebben gehad of omdat ze als lasser zijn begonnen en zijn doorgegroeid naar MLT. Toch zullen ze zelf in de praktijk nauwelijks lasverbindingen maken. Dit wordt meestal gedaan door gecertificeerde lassers. Na verloop van tijd kan de lastechnicus het lasser wat verleren. Door zijn of haar praktijkkennis uit het verleden kan de lastechnicus wel goed de praktische kant van het lassen doorgronden. Dit is belangrijk bij het beschrijven van een WPS en het adviseren van lassers.

Wat is een proeflas en waarvoor wordt deze las gemaakt?

De kwaliteit van lassen is belangrijk. Niet alleen bedrijven moeten kunnen aantonen dat de conform de normen lassen, ook lassers zelf dienen dit aan te kunnen tonen. Een bedrijf moet haar lasmethodes kwalificeren. Dit wordt de lasmethodekwalificatie genoemd. Elk lasproces dat binnen een bedrijf conform bepaalde normen moet worden uitgevoerd zal gekwalificeerd moeten worden. De lasmethodekwalificatie is daardoor een belangrijk proces dat binnen een bedrijf wordt uitgevoerd. De uitkomst van deze kwalificatie heeft invloed op de projecten die binnen het bedrijf mogen worden uitgevoerd en de producten die worden gemaakt. Bij elk product of project waarvoor gelast moet worden is een beschrijving aanwezig. Deze beschrijving is de lasmethodebeschrijving of in het Engels de Welding Procedure Specification. In deze beschrijving staat duidelijk omschreven hoe een las gemaakt moet worden en onder welke normen dat dient te gebeuren.

Certificaten en kwalificaties en de kwaliteit van lasmethodes
De kwaliteit van lasmethodes moet worden aangetoond. Het is echter niet efficiënt om elk gelaste product of machine te testen op de laskwaliteit. Het testen van een las kost namelijk veel tijd en daarnaast worden de testen ook in speciale testlaboratoriums gedaan. Verder worden veel proeven en testen destructief gedaan. Daarbij wordt onder andere gebruik gemaakt van een trekproef. Hierbij worden delen van het werkstuk uit elkaar getrokken om te kijken waar de scheur in het werkstuk ontstaat. Als de las beduidend eerder scheurt dan de rest van het werkstuk wordt het werkstuk over het algemeen afgekeurd.  Een andere vorm van destructief onderzoek is het doorzagen van de las. Hierbij wordt gekeken of er geen insluitingen of openingen in de las aanwezig zijn. Een destructief onderzoek leid tot de vernietiging van het werkstuk, daarom kan men niet elk gelast product destructief testen.

De lasmethodekwalificatie is hiervoor een geschikte oplossing. Dit is een schriftelijk document waarin is beschreven welke lasmethode gekwalificeerd is. Met de lasmethodekwalificatie kan een bedrijf aantonen dat ze het beschreven lasproces conform de normen uitvoert. Lassers die in het bedrijf werkzaam zijn moeten echter ook kunnen aantonen dat ze conform de normen kunnen en mogen lassen. Daarvoor moeten lassers ook gekwalificeerd worden. Een gekwalificeerde lasser ontvangt een lascertificaat. Met dit lascertificaat kan de lasser aantonen dat hij of zij een bepaalde lastmethode conform de normen uit mag voeren.

Proeflassen voor de lasmethodekwalificatie en lasser kwalificatie
Voordat een lastmethode daadwerkelijk gekwalificeerd wordt dient in het bedrijf dat de kwalificatie heeft aangevraagd een proeflas te worden gemaakt. Doormiddel van een proeflas kan het bedrijf aantonen of het bedrijf op het gewenste niveau last. Dit gewenste niveau is beschreven in de lasnormen. De lasnormen kunnen zowel Europees zijn (EN) als Amerikaans (ASME).

Ook de lasser dient voor zijn of haar certificering gekwalificeerd te worden. Daarvoor moet de lasser zelf een proeflas maken. Dit kan op het bedrijf zelf maar het mag ook bij een erkend opleidingsinstituut gedaan worden waar lasopleidingen worden gegeven.

Hoe wordt een proeflas gemaakt?
Een proeflas moet door een lasser worden gemaakt. Het maakt daarbij niet uit of het om een lasmethodekwalificatie gaat of een lasser kwalificatie, in beide gevallen moet de lasser zelf de proeflas maken. Om er zeker van te zijn dat een lasser zelf de las maakt is er een getuige aanwezig van een onafhankelijk instituut.

De lasser dient zelf zijn of haar laswerkzaamheden voor te bereiden. Daarbij moet de lasser zelf de voorgeschreven lasnaad aanbrengen. Ook dient de lasser zelf het lastoestel in te stellen zodat op de gewenste stroomsterkte wordt gelast. Als voorverwarming van de plaat is voorgeschreven moet de lasser er voor zorgen dat de gewenste voorverwarmtemperatuur wordt bereikt. Deze temperatuur wordt ook gemeten. Als deze voorbereidingen goed zijn uitgevoerd mag de lasser de daadwerkelijke las aanbrengen met de voorgeschreven lasdraad en het voorgeschreven lasproces bijvoorbeeld MIG/MAG, BMBE of TIG- lassen.

De onafhankelijke getuige ziet er op toe dat alle handelingen van de lasser conform de voorgeschreven normen worden uitgevoerd. Als dit het geval en de lasmethode is afgerond wordt de las vervolgens gekeurd door een eveneens onafhankelijk onderzoek- of testlaboratorium. De uitslag van dit laboratorium is bepalend voor het verstrekken van een lasmethodekwalificatie of een lasser certificaat.

Wat is gecertificeerd lassen en wat houdt lassen op certificaat in?

Gecertificeerd lassen wordt steeds belangrijker in Nederland en Europa. De kwaliteitseisen voor lassen worden vastgelegd in Normen. Deze normen kunnen zowel Europees zijn als Amerikaans. Producten die in Europa op de vaste wal worden gebruikt of geplaatst vallen meestal onder de Europese Normen (EN). In de offshore zoals de scheepsbouw en boorplatformen wordt vooral gelast onder de Amerikaanse normering deze heeft een ASME-code. De normering waaronder gelast wordt is van groot belang voor een bedrijf. Een bedrijf dient te kunnen aantonen dat gelast wordt onder een bepaalde normering en dat het bedrijf daarvoor gekwalificeerd is. Daarom moeten bedrijven hun lasmethodes kwalificeren.

Het kwalificeren van lasmethodes
Een bedrijf moet haar lasmethodes laten kwalificeren door een onafhankelijk instituut. Dit instituut bezoekt het bedrijf dat haar lasmethodes wil laten kwalificeren. Onder toezicht van een afgevaardigde van het onafhankelijk instituut dient een ervaren lasser van het bedrijf aan te kunnen tonen dat ze de las conform de gewenste normering kunnen maken. Deze las wordt vervolgens visueel beoordeeld. Daarna wordt de las ook nog getest conform de voorschriften van de norm. Het testen van de las kan destructief gebeuren en niet destructief. Een combinatie tussen deze twee onderzoeksmethodes is ook mogelijk. Niet destructief onderzoek wordt vooral gedaan met röntgenfoto’s of geluidsgolven. Destructief onderzoek wordt vooral gedaan doormiddel van trekproeven of het doorzagen van de las.

Als het onderzoek een positieve uitslag heeft krijgt het bedrijf bericht dat de lasmethode is gekwalificeerd. Dit zorgt er voor dat binnen het bedrijf onder de desbetreffende lasmethode gelast mag worden. Het proces van het kwalificeren van lasmethodes wordt lasmethodekwalificatie genoemd.

De Lasmethode Beschrijving of Welding Procedure Specification
De lasmethodekwalificatie is een ‘moederdocument’ voor de lasmethode beschrijving. De lasmethode beschrijving wordt in het Engels ook wel Welding Procedure Specification genoemd. Dit document hoort bij een bepaald project of object/ werkstuk dat gelast moet worden. In de lasmethodebeschrijving staat alle informatie die de lasser nodig heeft om de las te kunnen maken. Hierin is onder andere aangeven welk lasproces gehanteerd dient te worden. Er zijn zeer veel verschillende lasprocessen, MIG/MAG, TIG en BMBE –lassen zijn veelvoorkomende lasprocessen. Daarnaast is er ook een grote diversiteit aan toevoegmaterialen. Dit kan poeder gevulde draad  zijn of massieve draad. Ook de bekleding van de elektrodes van BMBE-lassen kan sterk verschillen.

Verder wordt uiteraard aangeven welke metaalsoort gelast dient te worden en welke materiaaldikte deze heeft. De eventuele A-hoogte is aangeven en ook het type naad is voor de lasser duidelijk in de lasmethodebeschrijving aangegeven. Bekende lasnaden zijn de V-naad, X-naad, K-naad, I-naad en de stompe lasnaad. Het is belangrijk dat de lasser gekwalificeerd is om de lassen te maken die in de lasmethodebeschrijving zijn aangegeven daarom moeten lassers gecertificeerd of gekwalificeerd worden.

Hoe wordt een lasser gecertificeerd of gekwalificeerd?
Een lasser wordt gekwalificeerd of gecertificeerd doormiddel van een proeflas op een werkstuk. De lasser maakt onder toezicht van een onafhankelijke getuige een proeflas conform de lasmethodekwalificatie die binnen het desbetreffende bedrijf van toepassing is. Vervolgens wordt de las visueel beoordeeld en daarna verder onderzocht in een onderzoekslaboratorium. Als deze resultaten positief zijn ontvang de lasser een lascertificaat die op zijn of haar naam komt te staan. het lascertificaat is in tegenstelling tot de lasmethodekwalificatie niet onbeperkt ‘houdbaar’. Een lasser dient elk jaar opnieuw aan te tonen dat hij of zij nog op het aangegeven niveau kan lassen. Daarvoor moet een proefstuk worden gemaakt of een werkstuk gelast onder toezicht van een lastechnicus. Indien dit positief wordt beoordeeld ontvangt de lasser een stempel op de stempelkaart die hoort bij het lascertificaat. Vervolgens mag de lasser weer een half jaar op het certificaat lassen.

Gecertificeerd lassen is specialisme
Lassen op certificaat is niet eenvoudig. Over het algemeen worden de beste lassers gecertificeerd of gekwalificeerd. De lasser kan met zijn of haar geldige lascertificaat aantonen dat hij of zij kan lassen conform de normen die op het certificaat zijn vermeld. Een lascertificaat toont daarmee het specialisme aan van de lasser. Dit specialisme vergroot de meerwaarde van de lasser voor een bedrijf. Dit is een belangrijk voordeel. Een nadeel is echter dat een bedrijf de lasser meestal op alle laswerkzaamheden in zal zetten waarvoor de lasser gecertificeerd is. De lasser is daardoor een weliswaar een specialist maar kan dat ook als belemmering ervaren met betrekking tot de diversiteit in de werkzaamheden.

Gecertificeerde lassers zijn voor een bedrijf waardevol. Veel bedrijven willen gecertificeerde lassers aan hun bedrijf binden door de lascertificaten niet aan de lasser mee te geven maar in hun eigen administratie te bewaren. Als de lasser vertrekt uit het bedrijf krijgen ze dan meestal niet de lascertificaten mee. Daardoor is de meerwaarde van de lasser op de arbeidsmarkt minder groot. Een lascertificaat moet namelijk altijd aangetoond kunnen worden. Als de lasser zijn lascertificaat niet kan aantonen, kunnen bedrijven niet verifiëren of iemand echt daadwerkelijk op certificaat mag lassen. Een lasser zal in dat geval opnieuw gekwalificeerd moeten worden.

Wat is het verband tussen een lasmethodekwalificatie, lasmethodebeschrijving en de lasser kwalificatie

De kwaliteitseisen voor Europese producten wordt steeds strenger. Doormiddel van normeringen is vastgelegd aan welke eisen producten die in Europese bedrijven worden gemaakt moeten voldoen. Deze normen zijn er niet voor niets. Normen zorgen er voor dat bedrijven garant kunnen staan voor kwaliteit en veiligheid. Dit is belangrijk voor de consumenten en de werknemers die binnen een bedrijf werkzaam zijn. Daarnaast zorgt aantoonbare kwaliteit er voor dat de Europese producten op de wereldmarkt aantrekkelijker worden voor potentiële afnemers. De afnemers weten namelijk wat ze van de producten mogen verwachten. De concurrentiepositie van bedrijven wordt door de invoering en standaardisering van normen verbeterd.

In de metaaltechniek en de werktuigbouwkunde is veel aandacht voor normeringen. Met name op het gebied van lasverbindingen wordt veel aandacht besteed aan kwaliteitseisen. Een las is een niet-uitneembare verbinding, daarom moet een las goed aangebracht worden. Als de lasverbindingen van staalconstructies en machines niet goed zijn gemaakt kunnen de gevolgen zeer ernstig zijn. Daarom moeten bedrijven er voor zorgen dat ze hun lasmethodes gekwalificeerd hebben. Ook de lasmethodes dienen per project/ object duidelijk te zijn beschreven. verder dienen de lassers gekwalificeerd te zijn om de lassen te maken die in de lasmethodebeschrijving zijn aangegeven.

Wat is een lasmethodekwalificatie LMK?
Binnen de meeste bedrijven in de werktuigbouwkunde of metaaltechniek worden verschillende lasmethodes uitgevoerd. De verschillen tussen de lasmethodes hebben onder andere te maken met het verschil in lasprocessen zoals bijvoorbeeld TG, MIG/MAG en BMBE- lassen. Verder verschillend de materiaaldiktes en lasposities binnen een bedrijf. Ook de toevoegdraad en het al of niet voorverwarmen van de platen is van belang voor de lasmethode.

Een bedrijf die conform de normen producten produceert moet kunnen aantonen dat elke lasmethode is getoetst door een onafhankelijke instantie. Deze toetsing wordt ook wel kwalificatie genoemd. Binnen een bedrijf moet elke lasmethode gekwalificeerd zijn. Een lasmethodekwalificatie kan echter wel meerde lasposities dekken. Wanneer een las bijvoorbeeld op positie G6 of HL-45 (lassen van buis onder hoek van 45 graden) is gelast zijn de eenvoudiger lasposities daarmee gedekt, behalve de posities waarbij de lastoorts een neergaande beweging moet maken.

Wat is Lasmethodebeschrijving  LMB of een Welding Procedure Specification WPS?
Vanuit de lasmethodekwalificaties kunnen verschillende lasmethodebeschrijvingen worden gemaakt. Deze lasmethodebeschrijvingen worden ook wel afgekort met LMB. In het Engels wordt een lasmethodebeschrijving ook wel Welding Procedure Specification genoemd, dit wordt afgekort met WPS. Een lasmethodebeschrijving is niet hetzelfde als een lasmethodekwalificatie. De lasmethodebeschrijving komt echter uit de lasmethodekwalificatie voort. De lasmethodekwalificatie kan als ‘moederdocument’ worden beschouwd waar de lasmethodebeschrijving als ‘dochterdocument’ aan verbonden is.

De lasmethodebeschrijving bevat informatie die de lasser nodig heeft om de las conform de normen te maken. hierin is onder andere aangegeven welk lasproces door de lasser uitgevoerd dient te worden. dit kan bijvoorbeeld MIG/MAG of TIG-lassen zijn. Ook BMBE – lassen komt regelmatig voor. Verder zijn er nog diverse andere lasmethodes die in een lasmethodebeschrijving of WPS kunnen worden aangegeven.

De lasmethode die gebruikt wordt heeft onder andere te maken met het soort metaal dat gelast moet worden en de dikte van de plaat. Daarbij is ook de toevoegdraad van belang. Verder is in de lasmethodebeschrijving of het WPS aangegeven welke lasnaad aangebracht dient te worden. Dit kunnen bijvoorbeeld een X-naad, V-naad, K-naad of andere lasnaden zijn. Soms is één laslaag niet voldoende en dienen er meerdere laslagen of zogenoemde ‘snoeren’ aangebracht te worden. Dit is ook beschreven in de WPS of de lasmethodebeschrijving. Verder is aangegeven of de platen die gelast moeten worden ook voorverwarmd moeten worden of niet.

Een lasmethodebeschrijving of een WPS is gebonden aan een object of project dit in tegenstelling tot een lasmethodekwalificatie die bedrijfsgebonden is.

Wat is een lasser kwalificatie?
Lassers dienen zich te houden aan het WPS of de lasmethodebeschrijving die hoort bij het project of werkstuk dat ze moeten lassen. Men dient er echter zeker van te zijn dat de lasser onder de normen kan lassen die in de lasmethodebeschrijving zijn beschreven. Daarom moeten lassers gekwalificeerd worden en een Lasser Kwalificatie (LK) behalen. Deze kwalificatie wordt in het Engels aangeduid met Welder Preformance Qualifications (WPQ), ook de term Welders Qualification (WQ) wordt gebruikt.

Tijdens de kwalificering van een lasser dient de desbetreffende lasser een proeflas te leggen conform de lasmethodekwalificatie die bij het bedrijf gehanteerd wordt. Deze proeflas mag alleen door de lasser zelf worden gemaakt. Om er zeker van te zijn dat de lasser de las daadwerkelijk zelf legt is er een onafhankelijke getuige aanwezig. Deze getuige wordt ook wel aangeduid met de Engelse term ‘witness’. De witness controleert of de lasser het lasproces uitvoert volgens de normen en richtlijnen.

Nadat de lasser de proeflas heeft gelegd wordt deze visueel gekeurd. De las wordt bekeken en er wordt beoordeeld of de las er in eerste instantie goed uitziet, er mag bijvoorbeeld geen sprake zijn van randinkarteling of weggezakte lassen. Nadat de visuele inspectie of visuele beoordeling succesvol is verlopen wordt het werkstuk naar een keuringslaboratorium gestuurd.

In het keuringslaboratorium wordt de proeflas verder onderzocht op verborgen gebreken. Deze verborgen gebreken kunnen onder andere naar boven komen bij een niet-destructief onderzoek. Een niet-destructief onderzoek kan op verschillende manieren worden uitgevoerd. Hierbij kan gedacht worden aan röntgenfoto’s en geluidsgolven. Een onderzoek kan ook destructief worden uitgevoerd. Hierbij wordt het werkstuk vernietigd. Voorbeelden van een destructief onderzoek zijn een trekproef en het doorzagen van een las.

Als de proeven succesvol zijn uitgevoerd krijgt de lasser een certificaat waarop is aangegeven onder welke kwalificatie de lasser mag lassen. Een lasser kwalificatie is in tegenstelling tot een lasmethodekwalificatie beperkt houdbaar. Dit houdt in dat de lasser binnen een half jaar doormiddel van een stempel moet kunnen aantonen dat hij of zij een werkstuk heeft gemaakt onder de zelfde normen die in het lascertificaat zijn beschreven. Als dit niet meer gebeurd is het lascertificaat na een half jaar niet meer geldig.

Lasmethodekwalificatie, de lasmethodebeschrijving en de lasser kwalificatie
Bovengenoemde documenten zijn allemaal aan elkaar verbonden. De lasmethodekwalificatie is bedrijfsgebonden. De verschillende lasmethodekwalificaties zorgen er voor dat in het bedrijf bepaalde lasmethodes uitgevoerd mogen worden. Deze lasmethodes zijn beschreven in een WPS of lasmethodebeschrijving die gekoppeld is aan een project of werkstuk. Een lasser moet een geldige lasser kwalificatie hebben die hoort bij de lasmethode. Indien dit het geval is mag de lasser aan het desbetreffende project werken. Als er geen geldige lasser kwalificatie kan worden aangetoond mag de lasser niet aan het werkstuk werken.

Wat is een lasmethodekwalificatie en waarvoor is een lasmethodekwalificatie LMK nodig?

Een lasmethodekwalificatie wordt ook wel afgekort met LMK. Het is een rapport over de beproeving van een bepaalde las. In het Engels wordt een lasmethodekwalificatie een ‘Procedure Qualification Record’ genoemd, deze wordt afgekort met PQR. Een lasmethodekwalificatie is nodig voor elke nieuwe lasmethode die wordt toegepast in een bedrijf. De lassen die in een bedrijf worden aangebracht verschillen echter. Er kan worden gebruik gemaakt van bijvoorbeeld een hoeklas of er kunnen buizen rondom worden gelast. Verder is er een grote diversiteit aan lasnaden die door de lasser gevuld kunnen worden. Veelvoorkomende voorbeelden hiervan zijn de V-naad, de K-naad en de X-naad. Ook de metaalsoorten verschillen. Zo kunnen binnen een bedrijf verschillende metalen worden gelast zoals bijvoorbeeld roestvaststaal, koolstofstaal en aluminium.

Waarom een lasmethodekwalificatie?
Het is belangrijk dat in een bedrijf de lassen worden gemaakt conform de geldende normering. Daarom moeten lasmethodes gekwalificeerd worden. Elk bedrijf dient voor elke lasmethode die binnen het bedrijf uitgevoerd wordt gekwalificeerd te worden. Door deze lasmethodekwalificatie kunnen klanten of afnemers van het bedrijf er zeker van zijn dat de gelaste constructies of halffabricaten aan de gestelde normen voldoen. Deze normen worden steeds belangrijker. De kwaliteit van Europese producten moet gewaarborgd zijn. Dit zorgt voor een versteviging van de concurrentiepositie ten opzichte van opkomende economieën die lagere productiekosten hebben en meestal ook minder goede kwaliteit leveren. Verder eisen verzekeringsmaatschappijen dat constructies voldoen aan kwaliteitseisen. De basis voor deze kwaliteitseisen is het beschrijven en kwalificeren van lasmethodes. Daarom is een lasmethodekwalificatie niet alleen belangrijk, het is ook in veel gevallen verplicht.

Procedure lasmethodekwalificatie
Deze lasmethode dient door een onafhankelijke deskundige te worden beoordeeld. De onafhankelijke deskundige bezoekt hiervoor het bedrijf dat een bepaalde lasmethode wil kwalificeren. Onder toezicht van de deskundige wordt vervolgens de desbetreffende las door een lasser van het bedrijf gemaakt conform de procedure die gekwalificeerd dient te worden. Nadat de las is gemaakt wordt de las onderzocht. Het onderzoeken van een las wordt zowel destructief als niet-destructief  (NDO) gedaan door een expert. Niet-destructief onderzoek houdt in dat het werkstuk heel blijft en doormiddel van bijvoorbeeld röntgenfoto’s of geluidsgolven wordt gekeurd. Destructief onderzoek houdt in dat het werkstuk wordt vernietigd tijdens de proef. Zo kan tijdens destructief onderzoek het werkstuk doormidden worden gezaagd of uitelkaar worden getrokken,  waardoor het werkstuk na de proef niet meer bruikbaar is. Door deze proeven wordt duidelijk of de beproefde lasmethode aan de gestelde normen voldoet. De lasmethodekwalificatie wordt toegevoegd als bijlage bij de lasprocedure. Er wordt niet voor elk project een nieuwe lasmethodekwalificatie gemaakt. Als binnen het bedrijf precies dezelfde las gemaakt moet worden als in de kwalificatie is beschreven hoeft men de lasmethode niet opnieuw te kwalificeren.

Lasmethodekwalificatie en Lasmethodebeschrijving
Een lasmethodekwalificatie (LMK) is niet hetzelfde als een lasmethodebeschrijving. Een LMK is een bedrijfsgebonden kwalificatie. Dit houdt in dat een bedrijf met een LMK kan aantonen dat het bedrijf de in het LMK beschreven lasmethode conform de normen mag uitvoeren. Een LMK is niet alleen gebonden aan een bepaald bedrijf, de LMK is namelijk ook verbonden aan de specifieke normen waaronder de lasmethode is gekwalificeerd. Op dit moment hebben lasmethodekwalificaties een vrijwel onbeperkte ‘houdbaarheidsdatum’. Dit houdt in dat de LMK niet kan verjaren. De Europese wet- en regelgeving verandert echter voortdurend. In de meeste gevallen zorgen deze veranderingen er voor dat de kwaliteitseisen worden verscherpt. Daarom is het niet ondenkbaar dat lasmethodekwalificaties in de toekomst wel een beperkte ‘houdbaarheidsdatum’ krijgen. Dit houdt in dat bedrijven regelmatig moeten bewijzen dat de nog aan de gestelde normen in de lasmethodekwalificaties voldoen.

Een lasmethodebeschrijving is, zoals eerder genoemd, wat anders dan een lasmethodekwalificatie. Een lasmethodebeschrijving (LMB)wordt ook wel in het Engels aangeduid met Welding Procedure Specification (WPS). In tegenstelling tot een LMK is een LMB project specifiek. Dit houdt in dat een LMB (of WPS) een beschrijving is die verbonden is aan een specifiek object dat gelast moet worden. De LMB is een beschrijving van de wijze waarom de las gemaakt dient te worden door de lasser. Daarbij komen alle factoren aan de orde die invloed hebben op het lasproces en de kwaliteit daarvan. Hierbij kan gedacht worden aan de materiaaldikte, de materiaalsoort en de toevoegdraad. Daarnaast is ook in een LMB beschreven welke naad gelast moet worden en of het materiaal voorverwarmd dient te worden of niet. De laspositie(s) zijn eveneens in de LMB beschreven evenals, uiteraard, het lasproces zelf zoals bijvoorbeeld: MIG/MAG, TIG of BMBE lassen. De lasser dient zich aan de richtlijnen van de LMB of het WPS te houden. De LMB en het WPS zijn afgeleid van de lasmethodekwalificaties die het bedrijf heeft.

Lasmethodekwalificatie en Lasser Kwalificatie
De las die in de lasmethodebeschrijving is beschreven moet uiteraard ook door een lasser gemaakt worden die gekwalificeerd is om de desbetreffende las te maken. Een lasser wordt daarvoor gekwalificeerd. Dit wordt in het Nederlands ook wel een Lasser Kwalificatie genoemd (LK), in het Engels wordt dit aangeduid met de afkorting WPQ dat staat voor ‘Welder Preformance Qualifications’. Een andere Engelse afkorting die wordt gebruikt is WQ dat voluit geschreven wordt als ‘Welders Qualification’.  De lasser wordt doormiddel van de Lasser Kwalificatie beproeft doormiddel van een proeflas. De proeflas die de lasser maakt is beschreven in de lasmethodekwalificatie die aan het bedrijf gebonden is. Een lasser kan met de Lasser Kwalificatie aantonen dat hij of zij kan lassen conform de lasmethodekwalificatie van het bedrijf.

De proeflas dient door de lasser zelf te worden gemaakt conform de beschrijving uit de LMK. Hierbij is een onafhankelijke ‘getuige’ aanwezig, deze wordt ook wel in het Engels aangeduid met ‘witness’. De witness is van een onafhankelijk instituut en is goed onderlegd op lasgebied. Hij of zij ziet er op toe dat de lasser echt zelfstandig de las aanbrengt conform de LMK. Na dit bevestigt te hebben dient de proeflas te worden getest. Deze wijze waarop de proeflas getest wordt is eveneens omschreven in het LMK. De test kan zowel niet-destructief als destructief worden gedaan. Als de proef of proeven op het gelaste werkstuk succesvol zijn verlopen wordt de lasser gekwalificeerd. Lassers die gekwalificeerd zijn om een bepaalde las te maken worden ook wel gecertificeerde lassers genoemd. In tegenstelling tot de lasmethodekwalificatie heeft de Lasser Kwalificatie wel een beperkte houdbaarheidsdatum. Op een stempellijst moet de lasser elk half jaar aantonen dat hij of zij nog aan de gestelde normen van de lasmethodekwalificatie voldoet.

Welke lasposities zijn er volgens de NEN-EN en ASME?

In de werktuigbouwkunde en de metaaltechniek wordt gebruik gemaakt van verschillende lasprocessen. Het is belangrijk dat een lasser een las op de juiste manier maakt en daarvoor het juiste lasproces en materiaal gebruikt. Voor lassers is het echter bijna onmogelijk om alle verschillende lasmethodes en bijbehorende richtlijnen te onthouden. Daarom maken lassers gebruikt van een lasmethodebeschrijving deze wordt ook wel afgekort met LMB. In het Engels wordt deze lasmethodebeschrijving ook wel Welding Procedure Specification of Weld Procedure Specification genoemd. Dit wordt afgekort met WPS. Zowel een WPS als een LMB kan door een lastechnicus worden geschreven.

Wat staat er in een Lasmethodebeschrijving en Welding Procedure Specification?
In een LMB of WPS staat informatie voor de lasser over hoe de las gemaakt dient te worden. Hierin is onder andere beschreven met welk lasproces de las moet worden gemaakt. Dit kan bijvoorbeeld MIG/MAG, TIG of elektrode zijn. Er zijn echter ook andere lasprocessen die gebruikt kunnen worden. Verder staat in het WPS of LMB welke lasdraad gebruikt moet worden en in het aantal lagen dat over elkaar heen aangebracht moet worden. De lasstroom en de voorverwarmtemperatuur hebben een belangrijke invloed op de kwaliteit van de las en kan men daarom ook lezen in het WPS of LMB. Ook de lasnaadvorm is beschreven, dit kan bijvoorbeeld een X-naad, V-naad of I-naad zijn. De diversiteit aan lasnaadvormen is zeer groot en is afhankelijk van de materiaalsoort en de wanddikte of plaatdikte. Deze zijn ook in het WPS en LMB beschreven. Verder is ook de laspositie aangegeven in deze rapporten. Daarover is hieronder meer informatie geschreven.

Welke lasposities worden toegepast in de metaalindustrie?
Er worden voor lasposities verschillende codes gebruikt. De code die wordt gebruikt voor een laspositie heeft te maken met de Europese normering en de Amerikaanse normering. De Europese Normering wordt aangegeven in NEN- EN. De Amerikaanse normering wordt vooral gebruikt in de offshore. Deze normering wordt aangegeven in een ASME-code. ASME is een afkorting die staat voor American Society of Mechanical Engineers. De ASME-code wordt internationaal het meest gebruikt. Hieronder is een lijst weergeven van de verschillende lasposities en de bijbehorende code:

ASME lasposities

1F  hoeklas onder de hand.

2F  hoeklas uit de zij.

3Fu  hoeklas verticaal (stapelen).

3Fd  hoeklas verticaal (van boven naar beneden).

4F  hoeklas boven het hoofd.

1G  V-las onder de hand.

2G  V-las horizontaal uit de zij.

3Gu V-las verticaal (stapelen).

3Gd V-las verticaal (van boven naar beneden).

4G  V-las boven het hoofd.

5Gu  V-las in horizontaal liggende pijp rondom lassen (stapelen).

5Gd  V-las in horizontaal liggende pijp rondom lassen (van boven naar beneden).

6G  V-las in pijp onder 45° rondom lassen.

6GR  V-las in pijp onder 45° rondom lassen met o.a. extra ring om pijp.

De letter F staat voor ‘Fillet weld’ dit is een hoeklas. De letter G staat voor ‘Groove weld’ en wordt gebruikt als aanduiding voor V-naden. Onder de Europese Norm zijn de lasposities ingedeeld in de volgende aanduidingen:

NEN-EN lasposities

PA   hoeklas onder de hand, V-las onder de hand.

PB   hoeklas uit de zij.

PF   hoeklas of V-las verticaal omhoog stapelen van de las.

PG  hoeklas of V-las verticaal naar beneden lassen van de las.

PD   hoeklas boven het hoofd.

PC   V-las horizontaal uit de zij.

PE   V-las boven het hoofd.

PH  V-las in horizontaal liggende pijp rondom lassen (stapelen).

PJ   V-las in horizontaal liggende pijp rondom lassen (van boven naar beneden).

PK  V-las in horizontaal liggende pijp rondom lassen.

H-L045, V-las in pijp onder 45° rondom lassen  (stapelen).

J-L045, V-las in pijp onder 45° rondom lassen (van boven naar beneden).

Welke vier varianten zijn er van het MIG/MAG lasproces?

MIG/MAG lassen wordt zeer veel toegepast in de metaaltechniek en de werktuigbouwkunde. Het lasproces wordt ook wel aangeduid met CO2-lassen. Deze benaming is echter onjuist wanneer deze voor beide lasprocessen wordt gehanteerd. MIG/MAG zijn twee afkortingen die meestal bij elkaar worden genoemd. Toch is MIG niet hetzelfde als MAG-lassen. Het verschil tussen deze twee afkortingen wordt duidelijk wanneer men de afkortingen voluit gaat schrijven.

MIG lassen
MIG is een afkorting die staat voor ‘Metal Inert Gas’, dit maakt duidelijk dat men hierbij gebruik maakt van inerte gassen. Deze gassen zijn niet reactief en gaan dus geen reactie aan met de gassen in de lucht die rondom het lasproces aanwezig is. Voorbeelden van inerte gassen zijn Helium en Argon.

MAG lassen
De afkorting MAG staat voor ‘Metal Active Gas’. Deze afkorting maakt duidelijk dat bij MAG lassen wel gebruik wordt gemaakt van een actief gas, dit in tegenstelling tot MIG lassen. Een actief gas reageert wel op de gassen in de omgeving. Meestal wordt bij MAG lassen CO2 gebruikt of een mengsel dat bestaat uit CO2 en Argon. Voordeel van actieve gassen is dat deze gassen goedkoper zijn dan inerte gassen.

Vier verschillende varianten van MIG/Mag lassen
Naast de twee verschillende soorten gassen die worden gebruikt tijdens het MIG/MAG lassen zijn er ook nog vier verschillende varianten die bij het MIG/Mag lassen horen. Deze varianten zijn kortsluitbooglassen, pulserend lassen, lassen met gevulde draad en openbooglassen. Deze varianten zijn hieronder kort toegelicht.

  • Kortsluitbooglassen is een lasproces waarbij de elektrode van het lastoestel het werkstuk aantikt. Door dit aantikken ontstaat kortsluiting tussen het werkstuk en de elektrode. Hierdoor loopt een zeer hoge stroom door de laselektrode. De laselektrode is de lasdraad die op een rol toegevoerd wordt. De hoge stroom zorgt er voor dat de lasdraad afsmelt. Vervolgens wordt de korsluiting afgebroken. De draad wordt echter vanaf de rol voortdurend toegevoerd. Hierdoor ontstaat een circuit aan kortsluitingen. Daarom wordt kortsluitbooglassen in het Engels ook wel “Shortcut Circuit” genoemd.
  • Pulserend lassen is een lasproces waarbij twee verschillen stroomsterktes worden gebruikt. De basisstroom is constant en zorgt er voor dat de lasboog in stand wordt gehouden. Daarnaast is er nog een pulserende stroom. Deze pulsstroom komt over de basisstroom heen. De pulserende stroom zorgt er voor dat het toevoegmateriaal (de toevoegdraad) smelt. Hierdoor smelten er druppels toevoegmateriaal in het smeltbad. Pulserend lassen zorgt voor minder warmte inbreng tijdens het lasproces. Daardoor kan men beter in verschillende lasposities lassen.
  • Lassen met gevulde draad is een lasproces dat ook bij MIG/MAG lassen kan worden toegepast. De draad die wordt toegevoegd tijdens het lassen is, zoals de naam van het lasproces al duidelijk maakt, gevuld. De draad bevat een poeder die er voor zorgt dat er een slak ontstaat op het smeltbad. Een voorbeeld van poeder dat in de gevulde draad wordt toegepast is rutiel. MIG/MAG lassen met een draad die rutiel gevuld is wordt ook wel lassen met ‘rutiel gevulde draad’ genoemd. Lassen met gevulde draad zorgt er voor dat het smeltbad goed wordt beschermd door een slak, dit gebeurd ook met BMBE lassen (lassen met beklede elektrode). Daarom is MIG/MAG lassen met (rutiel) gevulde draad geschikt voor een omgeving waarbij wind en tocht invloed hebben op het lasproces. Uiteraard dient wind en tocht zoveel mogelijk vermeden te worden tijdens het lassen.
  • Openbooglassen kan ook met MIG/MAG lassen worden gedaan. Hierbij worden deeltjes van de elektrodedraad naar het werkstuk gesproeid. Het werkstuk wordt daarbij niet aangeraakt door de elektrode. De boogspanning is veel hoger dan wanneer men met een gesloten boog last en het werkstuk wel raakt met de elektrode. Tijdens lassen met open boog verstuiven kleine druppeltjes van de elektrode en belanden deze in het smeltbad dat tijdens het lasproces ontstaat. Het openbooglassen is een heet lasproces de draadsnelheid is groter dan bij kortsluitbooglassen.

De keuze van de variant van het MIG/MAG lasproces dat men kiest is afhankelijk van verschillende factoren. Tijd en snelheid kunnen belangrijke factoren zijn voor de keuze van een lasproces. Daarnaast is een goede verbinding en een mooie las ook belangrijk. In een lasmethodebeschrijving of Welding Procedure Specification (WPS) is duidelijk aangegeven welke lasmethode toegepast moet worden en welk toevoegmateriaal gebruikt moet worden. Daarnaast hebben de meeste bedrijven ook een Middelbaar Lastechnicus (MLT) of een International Welding Technologist (IWT) die veel kennis heeft van lasprocessen. Zowel de MLT als de IWT kunnen belangrijke informatie verschaffen over lasprocessen. Deze informatie kan de lasser gebruiken om de juiste lasmethode te gebruiken zodat de gewenste kwaliteit wordt geleverd.

Wat is BMBE lassen en waar wordt dit lasproces voor gebruikt?

BMBE lassen is een lasproces dat wordt gebruikt in de metaaltechniek. BMBE is een afkorting die staat voor booglassen met beklede elektrode. Het BMBE lassen wordt soms ook wel elektrisch lassen genoemd. Dit is echter een algemene term, er zijn namelijk verschillende elektrische lasprocessen waar BMBE lassen er slechts één van is. In het Engels wordt de afkorting SMAW gebruikt. Deze afkorting staat voor “Shielded Metal Arc Welding”. Ook in Nederland wordt de afkorting SMAW steeds vaker gebruikt. Dit heeft onder andere te maken met de Amerikaanse normering waar Nederlandse werkstukken aan moeten voldoen. Hierbij kan gedacht worden aan de Amerikaanse normeringen ASME en ASTM.

Beklede elektrode
Booglassen met een beklede elektrode is een elektrisch lasproces dat hoort bij elektrisch booglassen. Hierbij wordt gebruik gemaakt van een elektrode die afsmelt. De kern van de elektrode bestaat uit een metalen draad. Deze metalen draad geleid stroom. Daarnaast dient de metalen draad tevens als toevoegmateriaal. In tegenstelling tot bijvoorbeeld MIG/MAG lassen en TIG-lassen wordt bij elektrode geen beschermgas toegevoegd. Het beschermgas ontstaat uit de bekleding die rondom de elektrode aanwezig is en tijdens het lassen verbrand. Daarbij vormt zich een beschermgas. Er zijn drie verschillende hoofdgroepen waarin de elektrodebekleding kan worden ingedeeld: rutiel, basisch en cellulose.

Rutiel beklede elektrode
De rutielbekleding wordt het meeste toegepast. Er ontstaat een zachte lasboog waar door er verhoudingsgewijs weinig spatten ontstaan. Met rutiel beklede elektrode kan men in verschillende lasposities lassen. De elektrode kan men makkelijk ontsteken daarnaast vloeit de metalen draad (elektrode) als toevoegmateriaal goed in het smeltbad dat tijdens het lasproces ontstaat. BMBE Lassen met rutiel beklede elektrode zorgt voor een sterke lasverbinding.

Basisch beklede elektrode
Elektrodes die bekleed zijn met basisch materiaal hebben een hoog gehalte aan krijt en fluoriet. Door deze bekleding ontstaat een smeltbad met weinig waterstof. Hierdoor ontstaat een zeer grote kerftaaiheid. Daarnaast is BMBE lassen met basisch beklede elektrodes een lasproces dat zorgt voor een schoon smeltbad. De las die ontstaat is echter wel grover dan lassen met een rutiel beklede elektrode. Ook is de slak op de las minder makkelijk te verwijderen. Het lasproces met basisch beklede is minder eenvoudig dan BMBE lassen met een rutiel elektrode.

Cellulose beklede elektrode
BMBE lassen met elektrodes die met cellulose zijn bekleed is ook mogelijk. Meestal is de cellulose rondom de elektrode voor een groot deel gemaakt van houtmeel. Hierdoor ontstaan tijdens het lassen veel spatten en daarnaast is er veel rookontwikkeling. Het lasproces is echter wel snel en kan daarnaast in verschillende posities worden uitgevoerd. BMBE lassen met cellulose elektrode is geschikt om verhoudingsgewijs grote openingen te overbruggen. BMBE lassen met cellulose elektrode wordt veel gebruikt bij het aan elkaar lassen van pijpleidingen. Dit noemt men ook wel fleetwelding. Cellulose elektrodes worden door fleetwelders ook wel ‘diepe-inbrand-elektrode’ of fleetweldelektrode genoemd.

Hoe wordt BMBE lassen uitgevoerd?
De manier waarom BMBE lassen wordt uitgevoerd is voor een groot deel afhankelijk van de elektrodebekleding die wordt gebruikt. Er zijn echter wel een aantal algemene kenmerken van BMBE lassen. Daarom kan een algemene beschrijving worden gegeven van dit lasproces.

Tijdens het BMBE lassen ontstaat een elektrische boog tussen het werkstuk en de beklede elektrode. Deze elektrische boog zorgt voor zeer veel hitte. De hitte zorgt er voor dat de elektrode en het werkstuk gaan smelten. De bekleding wordt verbrand en daarbij komen gassen vrij. Deze gassen zijn beschermgassen die er voor zorgen dat de boog is stand wordt gehouden. Daarnaast zorgt het beschermgas dat uit de elektrodebekleding ontstaat er voor dat schadelijke invloeden van buitenaf het materiaal niet nadelig kunnen beïnvloeden.

Uit de bekleding van de elektrode ontstaat daarnaast een slak  die over de las heen komt te liggen. Tijdens het afkoelen van de las dient deze slak als bescherming tegen de invloeden van de omgeving. De slak wordt na het afkoelen van de las meestal verwijdert. De lasser moet er echter voor zorgen dat tijdens het lassen geen insluitsels ontstaan in de las. Hiermee wordt bedoelt dat er geen delen van de slak in het smeltbad ingesloten kunnen worden. Deze insluitsels zorgen er namelijk voor dat de kwaliteit van de las nadelig wordt beïnvloed.

Voor en nadelen van BMBE lassen
BMBE lassen heeft een aantal belangrijke voordelen en nadelen ten opzichte van andere lasprocessen. Een groot voordeel van BMBE lassen is het feit dat de lasapparatuur niet omvangrijk is. Hierdoor kan men BMBE lassen gebruiken voor het aanbrengen  van reparatielassen en andere lassen waar men met bijvoorbeeld MIG/MAG-lastoestellen niet kan komen. Aan MIG/MAG-lastoestellen en TIG-lastoestellen zijn grote gasflessen verbonden om beschermgas te bieden tijdens het lasproces. Dat is voor het BMBE lassen niet nodig omdat de bekleding rondom de elektrode het beschermgas biedt. Daarom is elektrode lasapparatuur ook voordeliger in aanschaf. Daarnaast is elektrode lassen een eenvoudig lasproces om te leren wanneer men rutiel elektrodes gebruikt.

Nadelen van BMBE lassen zijn het hoge stroomverbruik. Daarnaast moet de slak na het lasproces verwijdert worden. Dit zijn extra handelingen die de lasser moet verrichten. Verder ontstaat het risico op insluitsels van de slak tijdens het lassen. De elektrodes worden telkens op nieuw in de lastoorts aangebracht. In tegenstelling tot MIG/MAG lassen waar de lasdraad op een rol wordt aangevoerd is elektrode wel arbeidsintensiever. De lasser zal regelmatig de afgesmolten elektrode moeten vervangen. Dit is één van de redenen waarom BMBE lassen niet geautomatiseerd kan worden.