Wat is langsnaadlassen?

Langsnaadlassen is een lasproces waarbij een lasmachine gebruikt wordt om een lange lasnaad te lassen. Meestal wordt hierbij een zogenaamde OP lasmachine gebruikt. OP staat voor Onder Poeder lassen. In plaats van beschermgas wordt gebruik gemaakt van een soort poeder. Dit poeder wordt door de hitte van het lasproces verbrand en omgezet in een soort beschermgas dat vergelijkbaar is met het beschermgas dat ontstaat bij het verbranden van de beklede elektrode tijdens het BMBE lassen.

Waar wordt langsnaadlassen toegepast?
Het langsnaadlassen is een lasproces dat veel wordt toegepast bij grote plaatconstructies met lange lasnaden. Om die reden wordt het langsnaadlassen vooral gebruikt in de scheepsbouw en jachtbouw. Ook in de apparatenbouw en de bouw van grote tanks en silo’s komt het langsnaadlassen voor.

Het machinaal langsnaadlassen vereist een speciale machine die kostbaar is in aanschaf en bovendien erg omvangrijk is. Daarom hebben kleinere bedrijven meestal geen ruimte en mogelijkheden om langsnaadlassen op grote schaal uit te voeren. Het langsnaadlassen wordt daarom vaak bij grote plaatbewerkers gedaan. Die kunnen wel als halfabricaten toeleverancier opereren voor de kleinere bedrijven. Langsnaadlassen wordt door veel bedrijven vaak uitbesteed aan bedrijven die hierin gespecialiseerd zijn.

Hoe wordt automatisch langsnaadlassen gedaan?
Het langsnaadlassen kan volledig gemechaniseerd worden uitgevoerd waarbij een machine wordt gebruikt die zelf de lasnaad scant. Vervolgens bepaalt de voorgeprogrammeerde machine de positie van de lastoorts en de instelling van het aantal volts en ampères dat nodig is om het basismateriaal en het lastoevoegmateriaal in een smeltbad samen te brengen.

Semiautomatisch langsnaadlassen
Het langsnaadlassen kan echter ook semiautomatisch worden gedaan. In dat geval is er sprake van een machine die het lasproces uitvoert maar wel onder directe begeleiding van een ervaren lasser. De lasser begeleid het lasproces door de toorts precies over de lasnaad heen te sturen. Daarbij kan de lasser vaak tegelijkertijd met de machine meebewegen. Dit gebeurd meestal met behulp van een machine op rails waarbij de lasser op een karretje mee kan rijden tijdens het lasproces. De lasser kan indien gewenst bijsturing bieden en de lasmachine bedienen.

Langsnaadlassen met de hand
In feite zou men ook met de hand een lastoorts kunnen bedienen tijdens het langsnaadlassen. Dat zou bijvoorbeeld kunnen met behulp van MIG/MAG lassen omdat daarbij voortdurend lastoevoegmateriaal in de lasrevolver wordt doorgevoerd. BMBE lassen is minder geschikt omdat het aantal elektrodes dat moet worden ingevoerd over een grote lasnaad waarschijnlijk zeer omvangrijk is.

Ook TIG lassen is niet geschikt voor het langsnaadlassen over grote afstanden omdat hierbij met de hand het lastoevoegmateriaal in het smeltbad wordt gebracht. Dat zorgt er voor dat er regelmatig nieuw lastoevoegmateriaal moet worden gepakt waardoor het smeltbad kan afkoelen. Bovendien heb je doordat je het lastoevoegmateriaal met de hand moet toevoegen niet de mogelijkheid om je hand te ondersteunen.

Langsnaadlassen leren
Het langsnaadlassen is niet een heel complex lasproces. Het vereist wel concentratie en discipline. De moeilijkheid van het langsnaadlassen is dat er een las wordt gelegd over een lange afstand tussen twee lange platen. Dat zorgt er voor dat de las nauwkeurig moet zijn en dat de kwaliteit en vorm van de las constant moet zijn. Randinkarteling en een onderuitgezakte las moet worden voorkomen. Dit zijn slechts een paar voorbeelden van wat er fout kan gaan tijdens langsnaadlassen. Uiteindelijk leer je langsnaadlassen met ervaring. Voor OP lassen of Onder Poeder lassen zijn wel specifieke lasopleidingen en lascertificaten.

OP lascertificaten
De meeste lasverbindingen die met een OP lasmachine moeten worden gemaakt zijn gecertificeerd. Dat betekent dat een lasser die een OP las moet maken vaak op basis van de WPS op LMB (lasmethodebeschrijving) over een OP lascertificaat moet beschikken. Dit zijn persoonsgebonden lascertificaten.

Welke insluitsels kunnen in lasfouten aanwezig zijn?

Tijdens het maken van een lasverbinding kunnen verschillende fouten ontstaan. Het maken van een goede lasverbinding is niet eenvoudig. Een lasverbinding wordt pas goed als aan verschillende factoren is voldaan. Zo moet het juiste lasproces worden toegepast, dit kan bijvoorbeeld autogeen, MIG/MAG, TIG en BMBE lassen zijn. Er zijn echter nog verschillende andere lasprocessen. Elk lasproces heeft zijn eigen unieke eigenschappen. Zo wordt er bij sommige lasprocessen inerte gassen gebruikt terwijl bij andere lasprocessen actieve gassen worden gebruikt. Lasprocessen zoals autogeen lassen wordt gedaan doormiddel van een vlam terwijl MIG/MAG lassen doormiddel van een elektrische boog wordt gedaan. De vlam of de elektrische boog zorgt er voor dat er veel hitte ontstaat zodat het basismateriaal van het werkstuk smelt en het lastoevoegmatiaal ook.

Metaalinsluitselsin het smeltbad
Zowel het basismateriaal als het toevoegmateriaal versmelten samen in een smeltbad. Na uitharding van het smeltbad ontstaat een stevige verbinding. Door verkeerde invloeden kan het smeltbad echter niet goed gevormd worden of ontstaan er problemen bij het stollen. Dit kan leiden tot scheuren en andere problemen. Fouten die ontstaan tijdens het lassen worden ook wel lasfouten genoemd. Naast scheuren kunnen onder andere ook insluitsels voor problemen zorgen als deze ontstaan tijdens het lasproces. Hieronder zijn een aantal voorbeelden genoemd van soorten insluitsels die kunnen ontstaan tijdens het lassen in het smeltbad.

Slakinsluitsels
Soms worden meerdere lassen over elkaar heen aangebracht. Bij sommige lassen zoals BMBE lassen ontstaat een slak op de las. Deze las dient na afloop van het lassen goed te worden verwijdert. Dit doet men door de slak los te bikken. Als men de las niet goed wegbikt kunnen delen van de slak in de nieuwe laslaag worden ingesloten. Deze insluitingen worden ook wel slakinsluitsels genoemd. Slakinsluitsels kunnen ook ontstaan wanneer de lasser op een verkeerde manier last.

Poederinsluitsels
Bij sommige lasprocessen wordt gebruik gemaakt van laspoeders.  Dit wordt onder andere gedaan bij onder poederdek lassen, dit lasproces wordt ook wel OP-lassen genoemd. Ook bij elektroslaklassen wordt gebruik gemaakt van laspoeders. Poederinsluitsels kunnen tijdens deze lasprocessen worden veroorzaakt als een veel te grote hoeveelheid laspoeder op de lasboog wordt gestrooid. Meestal wordt bij OP-lassen een teveel aan laspoeder opgezogen of door de OP-lasser verwijdert. Als dit niet gebeurd kan een nieuwe las die over de vorige las heen wordt aangebracht vervuild raken met poederinsluitsels. Daarom moet een lasnaad altijd goed schoon worden gemaakt als men meerdere lassen over elkaar heen aanbrengt.

Metaalinsluitsels
Het smeltbad moet tijdens het lasproces goed in de gaten worden gehouden door de lasser. De lasser dient tijdens de voorbewerking op het lassen een schone lasnaad te maken zodat het smeltbad niet vervuild kan worden. Tijdens het lassen kan het smeltbad vervuild raken met andere metalen dan het metaal dat wordt gebruikt als toevoegmateriaal en het metaal van het werkstuk. Metalen die niet goed meesmelten in het smeltbad kunnen ingesloten worden. Hierdoor ontstaan metaalinsluitsels. Deze insluitsels kunnen bijvoorbeeld koper bevatten van de koperen smeltbadondersteuning of wolfraam door het afbreken van de TIG-laselektrode.

Waarom zijn insluitsels lasfouten?
Insluitsels veranderen de structuur van de las. De las wordt op de plek van een insluitsel minder dicht en daardoor bestaat de kans op een scheur in de las als de las onder druk komt te staan. Insluitsels zijn lasfouten die de mechanische stevigheid van de las benadelen. Voor bepaalde constructies en werkstukken zijn insluitsels niet erg. Dit is bijvoorbeeld het geval bij constructies die niet zwaar belast worden of voor de sier worden gemaakt. Bij dragende constructies of constructiedelen moeten de lassen echter van perfecte kwaliteit zijn. Insluitsels mogen hierbij niet voorkomen. Daarom worden deze lassen over het algemeen gekeurd onder strenge normen. Deze gecertificeerde lassen worden regelmatig destructief of niet-destructief (NDO) gekeurd. De manier waarop een las gekeurd moet worden staat in de lasmethodebeschrijving.

Welke soorten scheuren kunnen ontstaan tijdens lasprocessen?

Een lasverbinding is een verbinding die permanent is. Verbindingen die doormiddel van een las tot stand worden gebracht kunnen niet eenvoudig uitelkaar worden gehaald. Doormiddel van lassen worden twee materialen in elkaar versmolten eventueel met behulp van toevoegmateriaal. Het versmelten van de materialen gebeurd doorgaans onder een hoge temperatuur. Deze temperatuur wordt doormiddel van een vlam of een elektrische lasboog op het gewenste niveau gebracht. Aan elke lasverbinding worden eisen gesteld. Bij sommige lasverbindingen zijn de eisen niet heel hoog. Dit is bijvoorbeeld het geval bij constructies die niet zwaar belast worden. Er zijn echter ook constructie die zeer zwaar belast worden bijvoorbeeld kranen in de offshore. Hiervoor zijn zeer zware eisen opgesteld.

Lasmethodebeschrijving of Welding Procedure Specification
De eisen waaraan een lasverbinding moet voldoen staan in een lasmethodebeschrijving LMB of Welding Procedure Specification WPS. Deze beschrijvingen zijn geënt op de lasmethodekwalificatie van het desbetreffende bedrijf. In de LMB of het WPs staat duidelijk beschreven aan welke lasprocedure de lasser zich moet houden bij het maken van de las. Hierbij is aandacht voor de voorbewerking, het daadwerkelijke lassen en de nabewerking.

De voorbewerking voor het lasproces
De voorbewerking is van groot belang omdat sommige metaalsoorten voorverwarmd moeten worden in verband met het optreden van scheuren tijdens en na het lassen. Ook het snijden of slijpen van lasnaden is een belangrijk aspect van de voorbewerking. Daarnaast dient de lasnaad goed schoongemaakt te worden en dient de lasser er alles aan te doen om een goed ‘lasklimaat’ te creëren. Dit houdt in dat de lasser bij bepaalde lasprocessen moet voorkomen dat er tocht, vocht of vuil bij het smeltbad kan komen.

Het lassen
De lasser dient de lasmethode toe te passen die is voorgeschreven in de LMB of WPS. Dit kan bijvoorbeeld MIG/MAG, TIG, OP-lassen of  BMBE lassen zijn. Er zijn echter nog vele andere lasprocessen die in de praktijk worden gebruikt. Daarbij moet ook rekening worden gehouden met de juiste (bescherm)gassen en de toevoegmaterialen. Verder dient de lasser ook rekening te houden met de laspositie, de A-hoogte en het aantal lagen waarin gelast moet worden.

De nabewerking
Ook de nabewerking heeft een invloed op de kwaliteit van de las. Sommige lassen moeten zorgvuldig worden afgekoeld. Dit moet niet te snel gebeuren in verband met het ontstaan van scheuren. Daarnaast kunnen er bij bepaalde lasprocessen lasspetters ontstaan die verwijdert moeten worden. Dit is bijvoorbeeld het geval bij MIG/MAG lasprocessen. Bij sommige andere lasprocessen zoals BMBE lassen kan een ‘slak’ ontstaan op de las. Deze ‘slak’ dient zorgvuldig verwijdert te worden. Het verwijderen van de ‘slak’ is al helemaal belangrijk wanneer er nog een las over de bestaande las heen wordt aangebracht.

Lasfouten
Tijdens het lassen kunnen echter fouten ontstaan. Deze fouten worden ook wel lasfouten genoemd en kunnen zowel in de voorbewerking, tijdens het lassen en in de nabewerking ontstaan. Lasfouten kunnen ernstige gevolgen hebben voor de mechanische stevigheid van een constructie. Er zijn verschillende lasfouten die kunnen ontstaan. Voorbeelden hiervan zijn kraters, insluitingen, randinkarteling en scheuren.

Scheurvorming tijdens het lassen
Tijdens het lassen kunnen scheuren ontstaan. Deze scheuren ontstaan waar het materiaal uit elkaar wordt getrokken. Dit uit elkaar rekken en trekken van materiaal kan onder andere gebeuren door temperatuurswisselingen. Een scheur in een lasverbinding zorgt er voor dat de kwaliteit van de las wordt aangetast. Dit is afhankelijk van de omvang van de scheur, de dikte van het materiaal en de druk die wordt uitgeoefend op de constructie. Scheuren kunnen soms worden gerepareerd door de scheur mechanisch te verwijderen doormiddel van slijpen of gutsen. Daarna dient men een nieuwe lasnaad aan te brengen en deze zorgvuldig dicht te lassen conform de lasmethodebeschrijving of Welding Procedure Specification.

Er zijn verschillende soorten scheuren die kunnen ontstaan tijdens het lassen. De oorzaken van de scheuren zijn eveneens verschillend. Hieronder worden in een aantal alinea’s voorbeelden gegeven van soorten scheuren die kunnen ontstaat tijdens en na het lasproces.

Stollingsscheuren
Een soort scheuren die kunnen ontstaan tijden het lasproces zijn zogenoemde stollingsscheuren. Deze scheuren worden ook wel h/b scheuren genoemd. Hierbij staan de letters ‘h/b’  voor ‘hoogte’ en ‘breedte’ waarmee de verhoudingen tussen de hoogte en de breedte worden bedoelt. Deze stollingsscheuren ontstaan wanneer de hoogte van de las groter is dan de breedte van de las. Tijdens het stollen van de las kan een scheur ontstaan doordat de las langzaam van buiten naar binnen stolt. Als de las hoog is zal daardoor een groot temperatuurverschil kunnen ontstaan tussen de buitenkant van de las en de binnenkant van de las. Als er in een las verontreinigingen aanwezig zijn met een lager smeltpunt dan het lasmateriaal kunnen deze verontreinigingen naar binnen worden getrokken. Als er meerdere verontreinigingen bij elkaar in de buurt zitten kan deze plek tijdens het stollingsproces voor problemen zorgen. Door de krimpspanning of door een belasting van de constructie kan een scheur bij de verontreinigingen ontstaan. Deze scheur is echter niet altijd direct zichtbaar aan de buitenkant. De scheur kan door röntgenonderzoek worden ontdekt. Röntgenonderzoek is een variant van niet- destructief onderzoek NDO.

Waterstofscheuren
Bij harde metaallegeringen kunnen waterstofscheuren optreden. Deze scheuren ontstaan wanneer er tijdens het lassen veel waterstof in de las wordt opgenomen. De waterstofscheuren ontstaan onder andere door trekspanningen. De scheuren hoeven niet meteen te ontstaan tijdens het lassen en kunnen zelfs 48 na het afronden van het lasproces gevormd worden. Hoe waterstofscheuren precies ontstaan is nog niet helemaal bekend. Men vermoed dat waterstof diffundeert naar insluitsels en poriën en dat daar waterstofgas wordt gevormd. Dit waterstofgas zou voor grote druk zorgen waardoor materiaal uit elkaar wordt gedrukt. Waterstofscheuren kunnen worden voorkomen door lastoevoegmateriaal met weinig waterstof te gebruiken. Daarnaast dient de lasser tijdens de voorbewerking de lasnaad goed schoon te maken. in de nabewerking moet de lasser het materiaal of werkstuk nagloeien. Deze aspecten van het lasproces staan meestal in de lasmethodebeschrijving / Welding Procedure Specification.


Door warmtebehandeling kunnen spanningsvrijgloeischeuren ontstaan. Deze scheuren worden ook wel intergranulaire scheuren genoemd. Door deze scheuren ontstaat carbide-precipitatie. Het inwendige van de aanwezige korrels wordt door dit proces versterkt. Daarnaast segregeren onzuiverheden zoals S, P, Sn, As naar de grenzen van de korrel, hierdoor worden deze verzwakt. Langs de grenzen van de korrel treed de meeste vervorming op. Door deze vervorming kunnen scheuren ontstaan.

Lamellaire scheuren
Als in het lasmetaal niet-metallische insluitsels aanwezig zijn kunnen lamellaire scheuren ontstaan. Deze scheuren worden gevormd in de fabriek waar het metaal wordt vervaardigd. Tijdens het gieten van metaal in een vorm kan verontreiniging in het metaal terecht komen. Deze verontreiniging kan bijvoorbeeld een deel van de ‘slak’ zijn die bij het smeltproces van ijzer en ijzererts op het gesmolten staal drijft. Als de lasser een lasverbinding maakt op de hoogte van de verontreiniging in het metaal zal de verontreiniging door de uitwerking van de krimpspanning gaan splijten en inscheuren. Tegenwoordig wordt staal meestal vervaardigd met een continu-gietproces. Hierdoor wordt de kans op verontreinigingen beperkt en komen lamellaire scheuren bijna niet meer voor.

Wat zijn lasfouten en hoe ontstaan lasfouten?

Tijdens lassen worden verschillende materialen aan elkaar vast gesmolten. Hierbij kan gebruik worden gemaakt van verschillende lasprocessen. Bekende lasprocessen zijn lassen met beklede elektrode (BMBE lassen), MIG/MAG lassen en TIG lassen. Naast deze lasprocessen zijn er nog vele andere lasprocessen die worden gebruikt in de metaaltechniek. Elk lasproces heeft zijn eigen specifieke kenmerken. Bij lassen wordt gebruik gemaakt van een plasmaboog of een vlam om voldoende hitte te creëren voor het smeltbad van het lasproces. Daarnaast worden bij lassen ook bepaalde inerte en actieve gassen gebruikt. Dit verschilt echter per lasproces. Het lastoevoegmateriaal is ook een belangrijk aspect van het lasproces. Al deze verschillende aspecten worden beschreven in een lasmethodebeschrijving LMB of een Welding Procedure Specification WPS. Tijdens het lassen kunnen echter fouten ontstaan.

Lasfouten
In bovenstaande inleiding is beschreven welke factoren onder andere aan de orde kunnen komen wanneer men gaat lassen. Er zijn verschillende lasprocessen en verschillende materialen die gelast kunnen worden. Lassen wordt meestal gedaan onder hoge temperaturen. Hierdoor worden materialen zeer snel opgewarmd en koelen ze daarna weer af. Hierdoor ontstaan structuurveranderingen, krimp en spanningen. De reactie van materialen op het lasproces en het gebruikte gas is verschillend. Omdat er zoveel verschillende aspecten zijn die invloed hebben op het lasproces bestaat er een kans op fouten. Er zijn veel verschillende fouten die kunnen ontstaan, deze fouten worden ook wel lasfouten genoemd en kunnen in elk lasproces optreden.

Hoe ontstaan lasfouten?
Lasfouten ontstaan doordat de lasser in het voorbereidend werk, tijdens het lassen of in de nabehandeling foutief gehandeld heeft of gebruik heeft gemaakt van ondeugdelijke materialen en gereedschappen. Een lasser kan bijvoorbeeld het lastoestel verkeerd hebben ingesteld waardoor teveel warmte wordt ingebracht en er inbrandingen ontstaan. Ook de positie van de toorts is van groot belang. Als de toorts te ver bij het smeltbad vandaan wordt gehouden kunnen insluitingen in de las ontstaan waardoor de las aanzienlijk van minder goede kwaliteit wordt.

Veel lasfouten kunnen worden voorkomen door de lasser wanneer hij of zij de lasmethodebeschrijving of Welding Procedure Specification goed leest en de aanwijzingen daarin nauwkeurig opvolgt. Er zijn echter ook externe factoren die de kans op lasfouten kunnen vergroten. Hierbij kan men bijvoorbeeld denken aan vocht, tocht, wind en temperatuurwisselingen. Ook stof en ander vuil kunnen van invloed zijn op de kwaliteit van de las.

Gevolgen van lasfouten
De oorzaken van lasfouten zijn divers en de gevolgen van d lasfouten zijn eveneens verschillend. Ook de ernst van de fouten is verschillend. Lasfouten kunnen bijvoorbeeld alleen invloed hebben op het uiterlijk van de las. Door deze lasfouten kan de las minder mooi lijken maar kan de las nog wel sterk genoeg zijn. Het uiterlijk van een las kan vaak doormiddel van nabewerking worden verbetert. Hierdoor kunnen eventuele lasfouten aan het oppervlak worden weggewerkt.

Een lasfout kan echter ook grote gevolgen hebben. Een lasfout kan bijvoorbeeld ook een scheur zijn die in de las. Voorbeelden van scheuren die in een las kunnen ontstaan zijn:

  • Stollingsscheuren of h/b scheuren
  • Lamellaire scheuren
  • Spanningsvrijgloeischeuren
  • Waterstofscheuren

Een scheur in een lasverbinding zorgt er voor dat de lasverbinding minder stevig is, de kans op het doorscheuren van een lasverbinding is dan aanwezig. Vooral wanneer de las onderdeel uitmaakt van een dragende constructie brengt een scheur ernstige risico’s met zich mee voor de stevigheid van het geheel.

Opsporen van lasfouten
Er zijn verschillende methodes waarmee men lasfouten kan opsporen. Deze opsporingsmethodes kunnen worden onderverdeeld in destructief onderzoek (DO) en niet destructief onderzoek (NDO). Bij destructief onderzoeken van lasverbindingen wordt de las daadwerkelijk vernietigd. Het product of werkstuk is daardoor niet meer bruikbaar. Daarom doet men destructief onderzoek meestal op basis van steekproeven. Tijdens destructief onderzoek kan een lasverbinding bijvoorbeeld worden doorgezaagd. Hierdoor kan men de zaagsnede goed bekijken en zien of er scheuren of insluitingen aanwezig zijn. Het spreekt voor zich dat de lasverbinding door het zagen compleet is verwoest en dat het werkstuk daardoor niet meer bruikbaar is.

Niet destructief onderzoek wordt tegenwoordig ook regelmatig toegepast. Hierbij wordt het werkstuk niet vernietigd. De meest eenvoudige vorm van niet destructief onderzoek is het visueel beoordelen van de las met ‘het blote oog’. Hierbij kan men onder andere letten op randinkarteling, inbrandingen en het uitzakken van de las.

Andere vormen van niet destructief onderzoek wordt met behulp van apparatuur gedaan. Hierbij kan men bijvoorbeeld gebruik maken van röntgenonderzoek of echografie. Bij röntgenonderzoek worden röntgenfoto’s gemaakt van de las en bij echografie wordt gebruik gemaakt van geluidsgolven. Van de onderzoeksresultaten worden rapporten opgesteld waarmee de kwaliteit van de onderzochte las inzichtelijk kan worden gemaakt.

Wat is een European Welding Technologist EWT en wat voor werk doet deze?

European Welding Technologist EWT is een oude term voor een lastechnicus. Tegenwoordig wordt de functiebenaming Middelbaar Lastechnicus (MLT) gebruikt, de internationale functiebenaming hiervoor is International Welding Specialist, dit wordt ook wel afgekort met IWT. Iemand geldig EWT papieren heeft tegenwoordig in feite IWT papieren. De waarde van deze papieren op de arbeidsmarkt is gelijk zolang de EWT-er of IWT-er tijdens zijn of haar loopbaan er voor gezorgd heeft dat de papieren niet zijn verlopen.

Wat voor werk doet een EWT, IWT of een MLT?
Iemand met geldige EWT, IWT of MLT papieren kan in de werktuigbouwkunde of metaaltechniek verschillende functies uitoefenen. Een lastechnicus heeft veel verstand van lasprocessen en de normeringen die daarbij horen. Door deze kennis is een lastechnicus een waardevolle medewerker voor een bedrijf. Meestal werkt een lastechnicus in het middenkader van een bedrijf als een adviseur, inspecteur of medewerker kwaliteit. Een lastechnicus kan ook worden ingezet als lascoördinator. De lascoördinator controleert of de lasverbindingen binnen een bedrijf worden gemaakt volgens de normen.

Deze normen kunnen zowel Europese normen (EN) zijn als Amerikaanse Normen (ASME). Veel bedrijven in de werktuigbouwkunde werken onder één of meerdere normen. Deze normen stellen eisen aan de laskwaliteit. Bedrijven moeten hun lasmethodes kwalificeren. Doormiddel van lasmethodekwalificaties wordt duidelijk onder welke normen er binnen een bedrijf mag worden gelast. De lastmethodes die gekwalificeerd zijn worden vervolgens weer verwerkt in een lasmethodebeschrijving of een WPS (Welding Procedure Specification).

Een EWT, IWT of een MLT heeft veel kennis over lasprocessen
Een middelbaar lastechnicus heeft voldoende kennis om de lasprocessen in een lasmethodebeschrijving of WPS te beschrijven. Daarnaast weet een middelbaar lastechnicus ook welke normeringen bij bepaalde projecten horen. Hierdoor is de MLT een belangrijke vraagbaak voor een werktuigbouwkundige bedrijven.

Een lastechnicus heeft voldoende kennis om adviezen te gegeven over lasprocessen. Hij of zij weet welke verschillende soorten lasnaden gebruikt kunnen worden en welke lasprocessen gebruikt kunnen worden. hierbij kan gedacht worden aan MIG/MAG, TIG en BMBE lassen. Er zijn echter nog vele andere lasprocessen die door een lasser uitgevoerd kunnen worden. Elk lasproces heeft specifieke eigenschappen die het lasproces juist wel of juist niet geschikt maken voor een bepaald project. Een middelbaar lastechnicus kan hier over het algemeen goed over adviseren.

Daarnaast kan deze specialist ook goed adviseren over de lasnaden en bijbehorende vooropeningen die gemaakt moeten worden. Verder is voorstoken bij sommige lasprocessen vereist. Meestal gaat het hierbij om speciale metalen of plaatdiktes. De temperatuur van de plaat moet tijdens het lassen op het gewenste niveau zijn andere ontstaat geen stevige verbinding of gaat de plaat zelfs scheuren. Daarom weet een middelbaar lastechnicus meestal ook wat de voorstooktemperatuur is van de projecten die gelast moeten worden. Een middelbaar lastechnicus zal voortdurend nieuwe lastechnieken moeten leren en de ontwikkelingen op lastechnisch gebied moeten volgen.

Een MLT, EWT of IWT kan ook worden ingezet voor het controleren van lassen. Dit zal meestal in eerste instantie visueel gebeuren. Daarbij kan bijvoorbeeld gekeken worden of er geen randinkarteling is en of de doorlas goed is gemaakt. Het echte onderzoeken van lassen gebeurd meestal in een speciaal onderzoeklaboratorium. Hierbij kan de las zowel destructief als niet-destructief worden onderzocht. Bij destructief onderzoek wordt het werkstuk tijdens het onderzoeken van de las vernietigd en bij niet-destructief onderzoek blijft het werkstuk behouden.

Moet een middelbaar lastechnicus ook lassen?
Meestal is een middelbaar lastechnicus een middenkader functie. Deze persoon kan adviseren en coördineren op lasgebied. Het is over het algemeen wel belangrijk dat een lastechnicus verstand heeft van de praktijk wanneer deze daarover moet adviseren. Veel lastechnici kunnen daarom zelf ook lassen omdat ze dit op een opleiding hebben gehad of omdat ze als lasser zijn begonnen en zijn doorgegroeid naar MLT. Toch zullen ze zelf in de praktijk nauwelijks lasverbindingen maken. Dit wordt meestal gedaan door gecertificeerde lassers. Na verloop van tijd kan de lastechnicus het lasser wat verleren. Door zijn of haar praktijkkennis uit het verleden kan de lastechnicus wel goed de praktische kant van het lassen doorgronden. Dit is belangrijk bij het beschrijven van een WPS en het adviseren van lassers.

Wat is een proeflas en waarvoor wordt deze las gemaakt?

De kwaliteit van lassen is belangrijk. Niet alleen bedrijven moeten kunnen aantonen dat de conform de normen lassen, ook lassers zelf dienen dit aan te kunnen tonen. Een bedrijf moet haar lasmethodes kwalificeren. Dit wordt de lasmethodekwalificatie genoemd. Elk lasproces dat binnen een bedrijf conform bepaalde normen moet worden uitgevoerd zal gekwalificeerd moeten worden. De lasmethodekwalificatie is daardoor een belangrijk proces dat binnen een bedrijf wordt uitgevoerd. De uitkomst van deze kwalificatie heeft invloed op de projecten die binnen het bedrijf mogen worden uitgevoerd en de producten die worden gemaakt. Bij elk product of project waarvoor gelast moet worden is een beschrijving aanwezig. Deze beschrijving is de lasmethodebeschrijving of in het Engels de Welding Procedure Specification. In deze beschrijving staat duidelijk omschreven hoe een las gemaakt moet worden en onder welke normen dat dient te gebeuren.

Certificaten en kwalificaties en de kwaliteit van lasmethodes
De kwaliteit van lasmethodes moet worden aangetoond. Het is echter niet efficiënt om elk gelaste product of machine te testen op de laskwaliteit. Het testen van een las kost namelijk veel tijd en daarnaast worden de testen ook in speciale testlaboratoriums gedaan. Verder worden veel proeven en testen destructief gedaan. Daarbij wordt onder andere gebruik gemaakt van een trekproef. Hierbij worden delen van het werkstuk uit elkaar getrokken om te kijken waar de scheur in het werkstuk ontstaat. Als de las beduidend eerder scheurt dan de rest van het werkstuk wordt het werkstuk over het algemeen afgekeurd.  Een andere vorm van destructief onderzoek is het doorzagen van de las. Hierbij wordt gekeken of er geen insluitingen of openingen in de las aanwezig zijn. Een destructief onderzoek leid tot de vernietiging van het werkstuk, daarom kan men niet elk gelast product destructief testen.

De lasmethodekwalificatie is hiervoor een geschikte oplossing. Dit is een schriftelijk document waarin is beschreven welke lasmethode gekwalificeerd is. Met de lasmethodekwalificatie kan een bedrijf aantonen dat ze het beschreven lasproces conform de normen uitvoert. Lassers die in het bedrijf werkzaam zijn moeten echter ook kunnen aantonen dat ze conform de normen kunnen en mogen lassen. Daarvoor moeten lassers ook gekwalificeerd worden. Een gekwalificeerde lasser ontvangt een lascertificaat. Met dit lascertificaat kan de lasser aantonen dat hij of zij een bepaalde lastmethode conform de normen uit mag voeren.

Proeflassen voor de lasmethodekwalificatie en lasser kwalificatie
Voordat een lastmethode daadwerkelijk gekwalificeerd wordt dient in het bedrijf dat de kwalificatie heeft aangevraagd een proeflas te worden gemaakt. Doormiddel van een proeflas kan het bedrijf aantonen of het bedrijf op het gewenste niveau last. Dit gewenste niveau is beschreven in de lasnormen. De lasnormen kunnen zowel Europees zijn (EN) als Amerikaans (ASME).

Ook de lasser dient voor zijn of haar certificering gekwalificeerd te worden. Daarvoor moet de lasser zelf een proeflas maken. Dit kan op het bedrijf zelf maar het mag ook bij een erkend opleidingsinstituut gedaan worden waar lasopleidingen worden gegeven.

Hoe wordt een proeflas gemaakt?
Een proeflas moet door een lasser worden gemaakt. Het maakt daarbij niet uit of het om een lasmethodekwalificatie gaat of een lasser kwalificatie, in beide gevallen moet de lasser zelf de proeflas maken. Om er zeker van te zijn dat een lasser zelf de las maakt is er een getuige aanwezig van een onafhankelijk instituut.

De lasser dient zelf zijn of haar laswerkzaamheden voor te bereiden. Daarbij moet de lasser zelf de voorgeschreven lasnaad aanbrengen. Ook dient de lasser zelf het lastoestel in te stellen zodat op de gewenste stroomsterkte wordt gelast. Als voorverwarming van de plaat is voorgeschreven moet de lasser er voor zorgen dat de gewenste voorverwarmtemperatuur wordt bereikt. Deze temperatuur wordt ook gemeten. Als deze voorbereidingen goed zijn uitgevoerd mag de lasser de daadwerkelijke las aanbrengen met de voorgeschreven lasdraad en het voorgeschreven lasproces bijvoorbeeld MIG/MAG, BMBE of TIG- lassen.

De onafhankelijke getuige ziet er op toe dat alle handelingen van de lasser conform de voorgeschreven normen worden uitgevoerd. Als dit het geval en de lasmethode is afgerond wordt de las vervolgens gekeurd door een eveneens onafhankelijk onderzoek- of testlaboratorium. De uitslag van dit laboratorium is bepalend voor het verstrekken van een lasmethodekwalificatie of een lasser certificaat.

Wat is gecertificeerd lassen en wat houdt lassen op certificaat in?

Gecertificeerd lassen wordt steeds belangrijker in Nederland en Europa. De kwaliteitseisen voor lassen worden vastgelegd in Normen. Deze normen kunnen zowel Europees zijn als Amerikaans. Producten die in Europa op de vaste wal worden gebruikt of geplaatst vallen meestal onder de Europese Normen (EN). In de offshore zoals de scheepsbouw en boorplatformen wordt vooral gelast onder de Amerikaanse normering deze heeft een ASME-code. De normering waaronder gelast wordt is van groot belang voor een bedrijf. Een bedrijf dient te kunnen aantonen dat gelast wordt onder een bepaalde normering en dat het bedrijf daarvoor gekwalificeerd is. Daarom moeten bedrijven hun lasmethodes kwalificeren.

Het kwalificeren van lasmethodes
Een bedrijf moet haar lasmethodes laten kwalificeren door een onafhankelijk instituut. Dit instituut bezoekt het bedrijf dat haar lasmethodes wil laten kwalificeren. Onder toezicht van een afgevaardigde van het onafhankelijk instituut dient een ervaren lasser van het bedrijf aan te kunnen tonen dat ze de las conform de gewenste normering kunnen maken. Deze las wordt vervolgens visueel beoordeeld. Daarna wordt de las ook nog getest conform de voorschriften van de norm. Het testen van de las kan destructief gebeuren en niet destructief. Een combinatie tussen deze twee onderzoeksmethodes is ook mogelijk. Niet destructief onderzoek wordt vooral gedaan met röntgenfoto’s of geluidsgolven. Destructief onderzoek wordt vooral gedaan doormiddel van trekproeven of het doorzagen van de las.

Als het onderzoek een positieve uitslag heeft krijgt het bedrijf bericht dat de lasmethode is gekwalificeerd. Dit zorgt er voor dat binnen het bedrijf onder de desbetreffende lasmethode gelast mag worden. Het proces van het kwalificeren van lasmethodes wordt lasmethodekwalificatie genoemd.

De Lasmethode Beschrijving of Welding Procedure Specification
De lasmethodekwalificatie is een ‘moederdocument’ voor de lasmethode beschrijving. De lasmethode beschrijving wordt in het Engels ook wel Welding Procedure Specification genoemd. Dit document hoort bij een bepaald project of object/ werkstuk dat gelast moet worden. In de lasmethodebeschrijving staat alle informatie die de lasser nodig heeft om de las te kunnen maken. Hierin is onder andere aangeven welk lasproces gehanteerd dient te worden. Er zijn zeer veel verschillende lasprocessen, MIG/MAG, TIG en BMBE –lassen zijn veelvoorkomende lasprocessen. Daarnaast is er ook een grote diversiteit aan toevoegmaterialen. Dit kan poeder gevulde draad  zijn of massieve draad. Ook de bekleding van de elektrodes van BMBE-lassen kan sterk verschillen.

Verder wordt uiteraard aangeven welke metaalsoort gelast dient te worden en welke materiaaldikte deze heeft. De eventuele A-hoogte is aangeven en ook het type naad is voor de lasser duidelijk in de lasmethodebeschrijving aangegeven. Bekende lasnaden zijn de V-naad, X-naad, K-naad, I-naad en de stompe lasnaad. Het is belangrijk dat de lasser gekwalificeerd is om de lassen te maken die in de lasmethodebeschrijving zijn aangegeven daarom moeten lassers gecertificeerd of gekwalificeerd worden.

Hoe wordt een lasser gecertificeerd of gekwalificeerd?
Een lasser wordt gekwalificeerd of gecertificeerd doormiddel van een proeflas op een werkstuk. De lasser maakt onder toezicht van een onafhankelijke getuige een proeflas conform de lasmethodekwalificatie die binnen het desbetreffende bedrijf van toepassing is. Vervolgens wordt de las visueel beoordeeld en daarna verder onderzocht in een onderzoekslaboratorium. Als deze resultaten positief zijn ontvang de lasser een lascertificaat die op zijn of haar naam komt te staan. het lascertificaat is in tegenstelling tot de lasmethodekwalificatie niet onbeperkt ‘houdbaar’. Een lasser dient elk jaar opnieuw aan te tonen dat hij of zij nog op het aangegeven niveau kan lassen. Daarvoor moet een proefstuk worden gemaakt of een werkstuk gelast onder toezicht van een lastechnicus. Indien dit positief wordt beoordeeld ontvangt de lasser een stempel op de stempelkaart die hoort bij het lascertificaat. Vervolgens mag de lasser weer een half jaar op het certificaat lassen.

Gecertificeerd lassen is specialisme
Lassen op certificaat is niet eenvoudig. Over het algemeen worden de beste lassers gecertificeerd of gekwalificeerd. De lasser kan met zijn of haar geldige lascertificaat aantonen dat hij of zij kan lassen conform de normen die op het certificaat zijn vermeld. Een lascertificaat toont daarmee het specialisme aan van de lasser. Dit specialisme vergroot de meerwaarde van de lasser voor een bedrijf. Dit is een belangrijk voordeel. Een nadeel is echter dat een bedrijf de lasser meestal op alle laswerkzaamheden in zal zetten waarvoor de lasser gecertificeerd is. De lasser is daardoor een weliswaar een specialist maar kan dat ook als belemmering ervaren met betrekking tot de diversiteit in de werkzaamheden.

Gecertificeerde lassers zijn voor een bedrijf waardevol. Veel bedrijven willen gecertificeerde lassers aan hun bedrijf binden door de lascertificaten niet aan de lasser mee te geven maar in hun eigen administratie te bewaren. Als de lasser vertrekt uit het bedrijf krijgen ze dan meestal niet de lascertificaten mee. Daardoor is de meerwaarde van de lasser op de arbeidsmarkt minder groot. Een lascertificaat moet namelijk altijd aangetoond kunnen worden. Als de lasser zijn lascertificaat niet kan aantonen, kunnen bedrijven niet verifiëren of iemand echt daadwerkelijk op certificaat mag lassen. Een lasser zal in dat geval opnieuw gekwalificeerd moeten worden.

Wat doet een stereo lasser of een simultaan lasser in de werktuigbouwkunde?

In de werktuigbouwkunde worden regelmatig stereolassers of simultaanlassers gevraagd. Dit zijn twee verschillende functiebenamingen waarmee in principe dezelfde functie wordt bedoelt. In onderstaande tekst worden de functies stereo lasser en simultaan lasser gebruikt. In de praktijk gebruikt men deze functienamen ook regelmatig naast elkaar binnen een bedrijf. Zo kan het voorkomen dat de ene lasser zich stereo lasser noemt en zijn collega noemt zich simultaan lasser terwijl ze in feite dezelfde werkzaamheden uitvoeren op de werkvloer.

Wat zijn de werkzaamheden van stereolassers of simultaanlassers?
Stereolassers en simultaanlassers zijn in de eerste plaats lassers. Meestal beheersen deze lassers het TIG lasproces op een hoog niveau omdat voor stereolassen over het algemeen TIG wordt gebruikt. Dit houdt in dat veel stereolassers TIG lassen beheersen op niveau 3 of hoger. Ze moeten meestal lassen in verschillende plaatdiktes en wanddiktes aanbrengen.

Het stereolassen houdt in dat deze las aan twee kanten tegelijk wordt gelegd. Hiervoor zijn twee lassers nodig. De ene lasser staat aan de binnenkant van het werkstuk, bijvoorbeeld een tank, de andere lasser staat aan de buitenkant. Beide lassers moeten er voor zorgen dat het smeltbad tijdens het lasproces goed gevormd wordt. Door een goed smeltbad ontstaat een goede las aan de buitenkant en aan de binnenkant.

Het is belangrijk dat niet alleen de lassers goed op elkaar afgestemd zijn. Ook de lastoestellen moeten op de juiste manier worden ingesteld. Het aantal ampères waarop het lastoestel moet worden ingesteld is onder andere afhankelijk van de wanddikte of plaatdikte van het werkstuk. Als deze wanddikte of plaatdikte vereist dat er met 130 ampère gelast moet worden zal men dit totaal over de twee stereo lassers of simultaan lassers moeten verdelen. Anders ontstaat er te veel warmte inbreng tijdens het lassen. Dit zorgt er voor dat het smeltbad teveel vloeit en er gaten ontstaan. Een goede las kan met een te hoge warmte inbreng niet worden gemaakt. Daarnaast kan ook het werkstuk door een te hoge warmte inbreng worden beschadigd.

Het totaal aantal ampères wordt verdeeld tussen de twee simultaanlassers of stereolassers.  Omdat in de praktijk meestal één van de twee lassers het toevoegmateriaal in het smeltbad aanbrengt wordt het totaal niet precies in twee gelijke helften verdeeld. Degene die het toevoegmateriaal aanbrengt zal met iets meer ampère lassen dan de andere lasser. Een totaal aantal ampères van 130 kan worden verdeeld in 70 ampère voor de lasser die lastoevoegmateriaal aanbrengt en 60 ampère voor de lasser die aan de andere kant staat. Naarmate de plaatdikte groter wordt zal het lastoestel ook op meer ampères moeten worden ingesteld.

Waarvoor wordt stereolassen of simultaanlassen gebruikt?
Stereolassen of simultaanlassen wordt toegepast voor aluminium en vooral voor werkstukken die gemaakt zijn van roestvaststaal. Hierbij kan gedacht worden aan grote RVS tanks voor de voedingsmiddelenindustrie. Daarnaast wordt stereolassen of simultaanlassen ook gebruikt voor leidingen met een grote diameter. De diameter moet groot genoeg zijn voor een lasser die aan de binnenkant de las gelijktijdig met een lasser aan de buitenkant kan aanbrengen. De reden waarom stereolassen en simultaan lassen veel wordt gebruikt in de zuivel en andere voedingsmiddelenindustrieën heeft te maken met de hoge eisen die aan de voedselhygiëne worden gesteld. Het stereolasproces of simultaanlasproces zorgt voor een perfecte doorlas aan de binnenkant van het werkstuk. Hierdoor ontstaan tijdens het lassen geen opstaande randen of andere oneffenheden waarachter voedingsresten en vuil kunnen hechten. Deze resten kunnen een bron van bacteriën vormen en daardoor de kwaliteit van het voedsel nadelig beïnvloeden.

Welke vaardigheden hebben stereolassers en simultaanlassers?
Lassers die werkzaam zijn in de zuivel moeten hoogstaande laskwaliteit leveren. Het lasproces dat voor simultaanlassen of stereolassen wordt gebruikt is meestal TIG. De lasser heeft doordat hij zelf handmatig toevoegmateriaal in het smeltbad brengt een goede controle over dit smeltbad en kan daardoor de kwaliteit van de las goed beïnvloeden. TIG lassers moeten gevoel hebben voor het lasproces en moeten in hoge mate nauwkeurig zijn. Als deze lassers werken aan werkstukken die in contact komen met voedingsmiddelen worden de kwaliteitseisen nog zwaarder. Vaak moeten lassers dan specifieke lascertificaten halen voordat ze een las in de zuivel of voedingsmiddelenindustrie mogen aanbrengen.