Wat is carrousellassen?

Carrousellassen of carrousel lassen is een geautomatiseerd lasproces waarbij een cilindrische vorm zoals een tank kan worden gelast terwijl de tank zelf draait en de lastoorts in een vast positie blijft. Carrousel lassen lijkt wat dat betreft een klein beetje op orbitaal lassen. Bij orbitaal lassen wordt over het algemeen een pijp gelast die horizontaal in het orbitaallasapparaat is geplaatst alleen blijft de pijp dan in positie en beweegt de lastoorts automatisch over de lasverbinding. Bij carrousellassen wordt het werkstuk juist verticaal geplaatst op een platform dat draait. De lastoorts blijft in dezelfde positie en het lasproces wordt doormiddel van een computer gestuurd.

Terwijl het cilindrische werkstuk draait op het platvorm wordt de lasnaad dichtgemaakt door de lastoorts en het lastoevoegmateriaal. Carrousellassen is een geautomatiseerd lasproces maar tijdens het lasproces is wel een lasser of lasrobotoperator aanwezig om het lasproces te controleren en tijdig in te grijpen als er iets mis gaat. Bij het carrousellassen van grote tanks is aan de binnenkant van de tank een camera aanwezig waarmee de achterkant van het lasproces gevolgd kan worden. Op die manier kan de carrousellasser zowel de voorkant als de achterkant van de lasverbinding tijdens het lasproces in de gaten houden. Als men grote RVS tanks last doormiddel van carrousellassen dan gebruikt men inert backinggas en het TIG lasproces. De hoeveelheid toevoegmateriaal en de instellingen kunnen per product verschillen. De lasser wordt van te voren op de hoogte gebracht hoe het product gelast moet worden het hoe het carrousellassen moet worden uitgevoerd. Op basis van deze informatie wordt de computer die aan het apparaat vast zit ingesteld.

Wat is carbid?

Carbid is een witgeel tot grijsblauw, kristallijn poeder of steenachtig materiaal dat bestaat uit een anorganische verbinding van calcium en koolstof en heeft een molecuulformule van CaC2. Carbid is een product dat wordt vervaardigd door mensen en kan dus niet als gereed product worden gewonnen uit de natuur. Carbid komt dus niet uit een mijn maar wordt gemaakt. Formeel is calciumcarbide het calciumzout van ethyn. Voor carbid worden ook wel andere benamingen gebruikt zoals karbiet of carbuur.

Hoe wordt carbid gemaakt?
Het produceren van carbid gebeurd door steenkool met een hoog gasgehalte gezamenlijk met ongebluste kalk (calciumoxide) te verhitten. Dit gebeurd met een temperatuur tot wel 2000 graden Celsius. De steenkoolcokes worden in een vlamboogoven in verschillende lagen opgestapeld met daartussen de ongebluste kalk. Vervolgens worden deze lagen verhit door gebruik te maken van een elektrische vlamboog die gecreëerd wordt met grafietelektroden. Na het verhitten koelt het mengsel af en is carbid ontstaan. De hiervoor genoemde methode is in 1888 uitgevonden door Thomas Leopold Willson, hij was een Canadese uitvinder.

Ethyn en acetyleen
Door carbid in contact te brengen met een bepaalde hoeveelheid water ontstaat er een reactie waarbij gas vrijkomt. Dit proces wordt ook wel hydrolyse genoemd. Hydrolyse is de splitsing van een chemische verbinding onder opname van water. Tijdens de hydrolyse tussen carbid en water komt het gas ethyn vrij. Dit gas wordt ook wel acetyleen genoemd en is een brandbaar en explosief gas. Ethyn heeft verschillende toepassingen (gehad) in de techniek. Hieronder lees je in een aantal alinea’s een aantal voorbeelden van de toepassing van carbid en het daaruit geproduceerde acetyleen.

Toepassing calciumcarbide in carbidlampen
Calciumcarbide werd tussen 1900 en 1945 onder andere gebruikt voor een carbidlamp. Vroeger werden carbidlampen geplaatst op voertuigen zoals auto’s en vrachtauto’s. Ook werden speciale carbidlampen gemaakt voor fietsen. Een carbidlamp bevat een waterreservoir. Daaruit druppelt water dat op het carbid. Dit gebeurd met een nauwkeurige afstelling. Voor het contact tussen het water en het carbid ontstaat ethyn. Dit is een brandbaar gas. Wanneer het ethyngas met een vlam ontstoken wordt ontstaat er een wit licht. Carbidlampen moeten nauwkeurig worden afgestemd en zijn niet heel erg praktisch. Toen elektrische verlichting in opkomst kwam verdween de carbidlamp uit de voertuigentechniek.

Carbid en autogeen lassen
Carbid werd vroeger ook in smederijen gebruikt om ethyn oftewel acetyleen te maken als brandstof voor lasbranders. Het acethyleengas wordt gebruikt voor het zogenaamde autogeen lassen. Daarbij wordt acetyleen in een gasmengsel gebracht met zuivere zuurstof. Tegenwoordig wordt ethyn of acetyleen echter in gasflessen geleverd waardoor ethyn door de smid of lasser niet meer uit carbid hoeft te worden vervaardigd. Autogeen lassen wordt ook wel zuurstof-acetyleenlassen lassen genoemd en wordt tegenwoordig nog steeds gedaan. Het autogeenlassen wordt bijvoorbeeld nog gedaan in de installatietechniek. Daarbij worden dikwandige leidingen doormiddel van een autogeenbrander aan elkaar gelast door een autogeen lasser of een dikwandige cv-monteur. Het autogeen lassen verdwijnt echter langzaam uit de installatietechniek. Dit komt omdat het autogeenlassen wordt vervangen door het zogenaamde TIG lassen.

Carbidschieten
Bij veel mensen is carbid vooral bekend vanwege het carbidschieten. Hierbij wordt carbid in combinatie met water gebruikt om een explosie te creëren. Carbidschieten wordt in verschillende delen van Nederland nog jaarlijs gedaan, dit gebeurd meestal rond de jaarwisseling. In Nederland is deze traditie onder de naam carbidschieten bekend maar ook in België kent men deze traditie en noemt men het carbuurschieten. In sommige streken van Nederland heeft men het over pullenschieten, losschieten of melkbusschieten. De laatste benaming is best logisch want vaak wordt voor carbidschieten een melkbus gebruikt. Maar naast een melkbus kan men ook gebruik maken van een aangepaste gasfles of een verfbus.

De melkbus, of andere metalen behuizing, wordt voorzien van een bepaalde hoeveelheid carbid dat met water wordt natgemaakt. Vervolgens wordt de bus afgesloten. Dit gebeurde vroeger vaak met een deksel maar tegenwoordig gebruikt men uit veiligheidsoverwegingen steeds vaker een plastic bal. Door de reactie tussen water en carbid ontstaat het eerder genoemde ethyn. Dit brandbare gas wordt door een klein zundgat ontstoken of men gebruikt een bougie. Het ontstoken gas ontploft met een harde doffe dreun. Door de explosie wordt het deksel of de bal weggeschoten. Een knal met een melkbus kan erg luid zijn. Het EO-programma Checkpoint had in seizoen 7 aangetoond dat men met carbidschieten een geluid van 110 dB kan produceren. Daarom is gehoorbescherming bij carbidschieten zeker belangrijk als persoonlijk beschermingsmiddel. 

Leren lassen

Lassen is het maken van onuitneembare verbindingen tussen materiaal waarbij de uitgangsmaterialen in elkaar worden versmolten door het verhogen van de temperatuur van de contactvlakken. Deze korte definitie zal je niet in studieboeken over lassen aantreffen omdat deze is opgesteld door Pieter Geertsma van Technischwerken.nl. Toch is de definitie breed genoeg om alle verschillende soorten lasprocessen te omvatten. Er zijn een aantal basisaspecten die je moet weten voordat je kunt leren lassen. Hieronder staan een aantal belangrijke aspecten die van belang zijn als men wil leren lassen. Uiteraard wordt daarbij begonnen met algemene aspecten die bij het lassen aan de orde komen. Voor lassen is namelijk ook theoretische kennis nodig.

Smeltbad tijdens lassen
Als je wilt leren lassen is het belangrijk te weten dat bij lassen het maken van een goed smeltbad tussen het uitgangsmateriaal en eventueel het lastoevoegmateriaal van groot belang is voor het creëren van een kwalitatief goede lasverbinding.Het smeltbad is een term die wordt gebruikt voor het vloeibaar maken van de contactvlakken van de materialen die aan elkaar moeten worden verbonden. Dit smeltbad ontstaat door het verhogen van de temperatuur. Dat kan echter op verschillende manieren gebeuren. Zo maakt men bij autogeen lassen gebruik van een brander en maakt men bij MIG/MAG lassen en BMBE lassen gebruik van een elektrische vlamboog of plasmaboog. In het smeltbad kan men ook lastoevoegmateriaal aanbrengen waardoor het smeltbad groter wordt.

Beschermgas
Het is belangrijk dat het smeltbad niet verontreinigd raakt en goed beschermd wordt doormiddel van een beschermgas of backinggas. Dit gas is bij MAG lassen een actief gas, vandaar ook de Metal Active Gas. Actief gas is meestal CO2. Er zijn ook lasprocessen waarbij gebruik wordt gemaakt van een inert beschermgas. Voorbeelden hiervan zijn MIG lassen (afkorting staat voor: Metal Inert Gas) en TIG lassen (Tungsten Inert Gas). Een inert beschermgas zoals argon of helium beschermt het smeltbad nog beter tegen verontreiniging tijdens het lassen en zorgt er voor dat er geen corrosieve werking optreed tijdens het lassen.

Materialen die je kunt lassen
Bij het woord lassen denkt men meestal aan het maken van een onuitneembare verbinding tussen metalen maar met bepaalde lastechnieken kan men echter ook kunststoffen aan elkaar verbinden. Denk hierbij aan het spiegellassen waarbij de uiteinden van twee kunststofleidingen aan elkaar worden verbonden nadat ze eerst tegen een gloeiendhete ‘spiegel’ zijn aangedrukt. Omdat de meeste mensen lassen en lastechniek koppelen aan de metaalsector wordt in deze tekst de nadruk gelegd op de toepassing in de metaaltechniek. In de metaalsector wordt lassen veelvuldig toegepast wanneer de verbinding niet uitneembaar moet zijn. Metaal kan men over het algemeen beter aan elkaar lassen dan lijmen. Ook is een lasverbinding vaak veel effectiever dan een verbinding die doormiddel van solderen tot stand komt.

Ferro of non-ferro
Lasverbindingen worden in de metaalsector toegepast bij verschillende metaalsoorten. Deze metaalsoorten worden onderverdeeld in ferro en non-ferro. Bij ferro-metalen en legeringen bestaat het hoofdbestandsdeel uit ijzer wat gevoelig is voor corrosie of roest. Een voorbeeld hiervan is koolstofstaal dat veel wordt gebruikt in de staalconstructie vanwege de stevigheid en verhoudingsgewijs gunstige prijs. Bij ferro-metaal en legeringen maakt men over het algemeen gebruik van actief gas.

Non-ferro metalen zijn minder gevoelig voor corrosie of hebben een oxidelaag die het onderliggende materiaal goed beschermd zoals bij zink en aluminium het geval is. Soms zegt men dat non-ferrometalen edeler zijn dan ferro-metalen maar dat is niet altijd het geval. Zo staat zink in het periodiek systeem der elementen lager dan ferro terwijl zink toch veel beter bestand is tegen corrosie. Denk hierbij aan het verzinken van staal waarbij het zinklaagje het onderliggende staal beschermd tegen roest.

Non-ferro metalen worden ook wel inerte metalen genoemd en worden daarom gelast met een inert beschermgas of backinggas. Een aantal voorbeelden van Non-ferro metalen zijn aluminium, nikkel en zink. Sommige legeringen bevatten echter wel ijzer maar worden toch beschouwd als non-ferro zoals roestvaststaal dat ook wel bekend is onder de afkorting rvs. Het materiaal dat gelast wordt noemt men ook wel uitgangsmateriaal en bepaald in belangrijke mate welk lastoevoegmateriaal gebruikt kan worden. Het spreekt voor zich dat men voor inert uitgangsmetaal ook een inert lastoevoegmateriaal (lasdraad) gebruikt.

Lasposities
Een las kan in verschillende posities worden aangebracht. Daarbij kan men bijvoorbeeld denken aan onder de hand lassen maar ook recht omhoog lassen wat ook wel stapelen wordt genoemd. Andere posities zijn uit de zij lassen en boven het hoofd lassen. Dit zijn verschillende lasposities en verschillen ook in complexiteit. Zo is boven het hoofd lassen veel moeilijker dan onder de hand lassen.

MLT en IWT
De hiervoor genoemde alinea’s beschrijven algemene informatie die een lasser moet weten om een goede lasverbinding te kunnen maken. Gelukkig hoeft een lasser op theoretisch vlak niet alles te weten. Daarvoor zijn lasspecialisten oftewel lastechnici. Deze specialisten hebben veel kennis van lastechniek en hebben vaak een opleiding Middelbaar Lastechnicus gevolgd. Deze opleiding wordt ook wel afgekort met MLT. Ook de opleiding IWT is mogelijk, dit staat voor International Welding Technologist. In de praktijk heeft men het ook wel over een IWT-er of een MLT-er. Deze specialisten kunnen een lasmethodebeschrijving opstellen of een welding procedure specification. Daarover lees je in de volgende alinea meer

Lasmethodebeschrijving of welding procedure specification
Lassers moeten weten hoe een lasverbinding tot stand moet worden gebracht. Vooral bij complexere werkstukken van hoogwaardige legeringen is het belangrijk dat een lasser precies weet wat er van hem of haar verwacht wordt. Dat is overigens ook het geval bij constructies die worden gemaakt voor de bouw en offshore waarbij een lasser een uitstekende lasverbinding moet leggen omdat er anders grote gevaren kunnen ontstaan met betrekking tot de constructieve stevigheid van producten en constructies.

Bij dergelijke laswerkzaamheden wordt gebruik gemaakt van een welding procedure specification (wps) of een lasmethodebeschrijving (lmb). Deze duidelijke omschrijvingen zijn meestal opgesteld door een International Welding Technologist of een Middelbaar Lastechnicus. In een lasmethodebeschrijving of welding procedure specification staat informatie over het lastproces dat gehanteerd moet worden door de lasser maar ook het lastoevoegmateriaal, het beschermgas en de laspositie die de lasser moet hanteren voor het maken van de lasverbinding. In de praktijk zullen lassers voor het maken van dergelijke lasverbindingen ook persoonlijk gecertificeerd moeten worden. Dit houdt in dat de lasser een lascertificaat moet behalen die gekoppeld is aan zijn of haar naam.

Lasvaardigheid leren
Uit de alinea’s hierboven komt naar voren dat het maken van een lasverbinding niet eenvoudig is. Er is behoorlijk wat theoretische kennis voor nodig om een goede lasverbinding te maken. Het leren van lasvaardigheid is vooral een kwestie van toepassen. Dat houdt in dat men zelf regelmatig moet oefenen met lassen. Dan leert men namelijk een goed smeltbad maken en leert men ook wat het effect is van warmte op metaal. Er ontstaat namelijk krimp en rek in een werkstuk als men bepaalde gedeelten verwarmt en andere gedeelten niet verwarmt. Het lassen is namelijk vooral het lokaal verhitten van het werkstuk.

Een lasser kan echter ook een gedeelte van het werkstuk voorgloeien. Ook dit is beschreven in de lasmethodebeschrijving of welding procedure specification. Lassers zijn vooral praktijkmensen en daarom is het verstandig om met collega-lassers informatie uit te wisselen over hoe een lasverbinding gemaakt kan worden. Veel lassers hebben door jaren ervaring zichzelf truckjes aangeleerd met betrekking tot het vasthouden van de lastoorts en het instellen van het lasapparaat. Lassen is wat dat betreft echt een beroep dat je in de praktijk moet leren. Veel lassers hebben thuis ook een lastoestel staan waardoor ze ook thuis hun lasniveau op peil kunnen houden.

Uiteraard is het verstandig om een lasopleiding te volgen bij een opleidingsinstituut dat goed bekend staat. Veel technische mbo-scholen bieden lasopleidingen aan. Daarnaast heeft ook het Nederlands Instituut voor Lastechnieken (NIL) veel informatie over lastechniek. Lasopleidingen  die erkend zijn door het NIL hebben meerwaarde op de arbeidsmarkt.

Veiligheid en lassen
Lassen is overigens een beroep met risico’s. Tijdens het lassen maakt men gebruik van hoge temperaturen waardoor er een risico is op brand. Daarnaast wordt tijdens het lassen ook een zeer schadelijk UV-licht geproduceerd waartegen de ogen beschermd moeten worden. Lassers moeten in de praktijk altijd de voorschreven persoonlijke beschermingsmiddelen dragen. Dit houdt in dat ze een vlamvertragende lasoverall moeten dragen en een lashelm. De lasdampen moeten worden afgezogen doormiddel van een goed ventilatiesysteem of een lasdampafzuiginstallatie.

Veiligheidsinstructie en personeelsinstructieformulier
Lassers moeten daarnaast ook andere materialen zoals slijptollen en slijpmachines gebruiken conform de veiligheidsvoorschriften. Bedrijven zijn volgens de arbowetgeving verplicht hun werknemers te wijzen op veilig en verantwoord werken. Uitzendbureaus die lassers als uitzendkracht bemiddelen moeten de doorgeleidingsplicht hanteren. Dit houdt in dat deze uitzendbureaus bij de opdrachtgever de veiligheidsvoorschriften en de risico’s op de werkvloer moeten opvragen en doorgeven aan de uitzendkrachten die als lasser gaan werken. Op die manier worden lassers voor de aanvang van de werkzaamheden op de hoogte gebracht van de veiligheidsrisico’s die aan het laswerk verbonden zijn en de manier waarop de veiligheidsrisico’s beperkt kunnen worden. Dit gebeurd onder andere door een personeelsinstructieformulier die veel VCU gecertificeerde uitzendbureaus hanteren.

 

Wat is pasteuriseren?

Pasteuriseren is proces waarmee de houdbaarheid van aan bederf onderhevige voedingsmiddelen in de voedingsmiddelenindustrie wordt geoptimaliseerd door de voedingsmiddelen kort te verhitten zodat schadelijke bacteriën worden vernietigt zonder dat daarbij de voedingsmiddelen zelf beschadigd worden. Het woord ‘pasteuriseren’ is afgeleid van de uitvinder van dit proces namelijk Louis Pasteur. Hij was een Franse scheikundige en bioloog en heeft samen met Claude Bernard, een Franse fysioloog, de eerste pasteurisatie uitgevoerd op 20 april 1862. Bij pasteuriseren wordt een voedingsmiddel korte tijd verhit om schadelijke bacteriën te doden. Een andere methode om bacteriën te doden is hogedrukpasteurisatie. Bij hogedrukpasteurisatie wordt het product doormiddel van zeer hoge druk gepasteuriseerd. Net als bij verhitting worden door de hoge druk ook bacteriën gedood.

Pasteuriseren of steriliseren
Pasteuriseren is niet hetzelfde als steriliseren. Tijdens het pasteuriseren worden namelijk niet alle micro-organismen vernietigd. In plaats daarvan worden door het pasteuriseren de micro-organismen in voedingsmiddelen gereduceerd tot een niveau dat de voedingsmiddelen veilig en gezond kunnen worden gebruikt. Dit is een niveau waarbij het onwaarschijnlijk is dat er ziekten kunnen worden veroorzaakt door het nuttigen van het gepasteuriseerde voedingsmiddel. Door het pasteuriseren wordt de houdbaarheid van het product verlengd. Dit neemt echter niet weg dat men de gepasteuriseerde voedingsmiddelen wel gekoeld moet bewaren en moet verbruiken voor de vervaldatum.

Steriliseren is een proces dat met pasteuriseren vergeleken kan worden. Bij het steriliseren maakt men echter gebruik van een veel hogere temperatuur. Deze hoge temperatuur zorgt er echter wel voor dat de smaak van het product wordt gewijzigd. Dit gebeurd doordat de eiwitten tijdens het steriliseren door de hoge temperatuur chemische wijzigingen ondergaan. Omdat bij voedingsmiddelen de smaak erg belangrijk is gebruikt men sterilisering een weinig in de voedingsmiddelenindustrie.

Pasteuriseren van melk
Als men het woord pasteuriseren hoort dan associeert men dit meestal met zuivel of specifieker met gepasteuriseerde melk. Franz von Soxleth heeft in 1886 het pasteuriseren voor het eerst op melk toegepast. Er zijn twee methoden die gebruikt kunnen worden om melk te pasteuriseren:

  • Pasteuriseren doormiddel van een hoge temperatuur gedurende een korte tijd (HTST). De afkorting HTST staat voor de Engelse benaming High-Temperature Short Time. Bij de HTST methode wordt melk verhit tot een temperatuur van 72 °C. Deze verhitting duurt ten minste 15 seconden. Melk die met de HTST methode is gepasteuriseerd heeft een bewaartijd van twee tot drie weken als de melk gekoeld bewaard wordt.
  • Pasteuriseren doormiddel van een ultra hoge temperatuur (UHT). De afkorting UHT staat voor het Engelse Ultra-high temperature of het Nederlandse ultra hoge temperatuur. Tijdens dit pasteurisatieproces wordt de melk verhit tot een temperatuur van 138 °C. De verhitting vindt plaats gedurende een periode van minstens 2 seconden. Melk die doormiddel van UHT pasteurisering is behandeld zal in combinatie met een steriele behandeling en een steriele verpakkingsmethode veel langer houdbaar zijn dan HTST gepasteuriseerde melk. UTH gepasteuriseerde melk kan een langere periode op kamertemperatuur worden bewaard en heeft een houdbaarheid van twee tot drie maanden gemiddeld.

Tijdens het pasteuriseringsproces moet men er voor zorgen dat alle melk evenredig wordt verwarmd. Er moet geen deel van de melk korter of juist langer worden verhit. Het pasteuriseringsproces dient daarom zorgvuldig uitgevoerd te worden.

Pasteuriseren en lassen in de zuiveltechnologie
Pasteuriseren is een technologie die valt onder de voedingsmiddelentechnologie. Binnen de voedingsmiddelentechnologie wordt het pasteuriseren vooral toegepast in de zuiveltechnologie. Het pasteuriseren moet in de zuivelindustrie nauwkeurig worden uitgevoerd. Er zijn echter meer factoren die een grote invloed hebben op de voedselveiligheid van voedingsmiddelen. Machines moeten bijvoorbeeld ook steriel zijn evenals de leidingen waar de zuivel en andere vloeibare voedingsmiddelen doorheen stromen. De leidingen in de voedingsmiddelenindustrie zijn gemaakt van roestvast staal en worden aan elkaar gelast en aan elkaar gefit door specialisten.

Men heeft het ook wel over zuivellassers of lassers die een las op zuivelniveau kunnen maken. In feite worden de meeste lasverbindingen gedaan met behulp van formeren. Tijdens het formeren brengt men backinggas in de leidingen. Dit backinggas zorgt er voor dat er een goede doorlas ontstaat aan de binnenkant van de zuivelleiding. Een goede doorlas is glad en bevat geen corrosie. Daardoor krijgen bacteriën geen kans. Zuivellassers zijn lassers die het TIG lassen beheersen op hoog niveau.

Wat is formeren of lassen met backinggas?

Formeren is een vorm van smeltbadondersteuning waarmee met behulp van beschermgas of backinggas ook aan de achterkant van het smeltbad een optimale doorlassing kan worden verkregen. Beschermgas beschermd het smeltbad tegen de invloed van zuurstof en andere schadelijke elementen die in de lucht rondom het lasproces aanwezig kunnen zijn. Het formeren wordt vooral toegepast in het lassen van roestvast staal (RVS).

Lassen van RVS
Roestvast staal is een inert materiaal dat bestaat uit een legering een legering van ijzer, chroom, nikkel en koolstof. Men spreekt van roestvast staal als in deze legering minimaal 11 tot 12% chroom aanwezig is en maximaal 1,2% koolstof. Het lassen van rvs moet zorgvuldig gebeuren. Men gebruikt voor dit inerte materiaal ook een inert beschermgas zoals Argon. Door het gebruik van dit inerte beschermgas wordt voorkomen dat zuurstof uit de lucht kan inwerken op het smeltbad dat tijdens het lassen ontstaat. Argon wordt tijdens het TIG lassen aan de voorkant van de las op en rondom het smeltbad gestraald zodat het smeltbad beschermd is.

RVS stolt echter langzaam, dit houdt in dat het aardig wat tijd kost voordat het smeltbad is uitgehard. Doordat het smeltbad verhoudingsgewijs lang vloeibaar blijft heeft zuurstof langer de tijd om in te werken op de lasverbinding. Als zuurstof een verbinding aangaat met het smeltbad kan er oxidatie ontstaan, kortom roest. Dit is ongewenst omdat door deze oxidatie de kwaliteit van de lasverbinding wordt aangetast. Daarnaast is de lasverbinding ook minder schoon en minder hygiënisch als er roest aanwezig is. De voorkant van de lasverbinding wordt tijdens het lassen beschermd met een intert gas zoals Argon. De achterkant van de las wordt echter niet beschermd tijdens het lassen behalve als men hiervoor een andere oplossing bedenkt.

Backinggas ter bescherming van de lasverbinding
Als men de lasverbinding aan de achterkant van het smeltbad wil beschermen gebruikt men backinggas. Door het gebruik van het backinggas wordt ook aan de achterkant voorkomen dat er zuurstof kan inwerken op het smeltbad. Het gebruikt van backinggas zorgt er ook voor dat de lasverbinding ook in de toekomst beter bestand is tegen corrosie. Men kan een aantal verschillende gassen gebruiken zoals Argon, Stikstof en Stikstof – waterstof.

Formeren is gebruiken van backinggas
Het gebruiken van backinggas tijdens het lasproces wordt ook wel formeren genoemd. Het backinggas zorgt er voor dat het percentage zuurstof in de lucht wordt geminimaliseerd aan de kant waar de doorlas wordt gemaakt. Deze doorlaszijde is in feite de achterkant van de las. Vooral in de foodsector (voedingsmiddelensector) worden hoge eisen gesteld aan de doorlas. Denk hierbij aan de leidingen die worden gebruikt voor het transporteren van vloeibare zuivel. De lasverbindingen moeten een nette gladde doorlas hebben die geheel vrij is van oxidatie. Daardoor blijft de kwaliteit en voedselveiligheid van de zuivel zo optimaal mogelijk. De buis of leiding moet echter aan de binnenkant zijn voorzien van voldoende backinggas. Het proces dat daarbij aan de orde komt is formeren.

Formeren van een leiding of buis
Voor het formeren maakt men gebruik van formeergas, dit is zoals je hiervoor hebt gelezen, een backinggas. Tijdens het formeren brengt men dit formeergas in een buis. Dit zogenaamde formeren gaat net zo lang door totdat men het zuurstofgehalte zover omlaag heeft gebracht dat men een goede doorlas moet kunnen maken tijdens het lassen. Voordat men een las tot stand kan brengen heeft men echter twee delen die men doormiddel van een lasnaad aan elkaar moet verbinden. Er is dus sprake van een opening of lasopening. Dat zorgt er voor dat er ook formeergas kan ontsnappen. Daarom moet men tijdens het formeren doorgaan met het inbrengen van formeergas zodat het zuurstofpercentage op het gewenste lage niveau blijft.

Formeerlassen
Lassen van rvs buizen en leidingen wordt ook wel formeerlassen genoemd. Formeerlassen is echter geen officieel lasproces. Het woord formeerlassen is een samenvoeging van formeer en lassen oftewel lassen met behulp van formeergas/ backinggas. Andere worden die men in dit verband zou kunnen gebruiken zijn leidinglassen, zuivellassen of lassen op zuivelniveau. De benaming zuivellassen is ook een vakjargon voor het lassen van leidingen in de zuivelbranche. Het lassen van deze leidingen moet nauwkeurig gebeuren en gebeurd eigenlijk altijd met backinggas. Daarom zou men dit lasproces net zo goed formeerlassen kunnen noemen. Echter zijn al deze benamingen varianten op het TIG lassen. De letters T.I.G. staan voor Tungsten Inert Gas.

Wat is handlassen?

Handlassen is werkwoord dat wordt gebruikt voor alle lasprocessen die door een lasser met de hand met behulp van een lastoorts worden uitgevoerd. Het handlassen is de tegenhanger van geautomatiseerd lassen. Bij geautomatiseerd lassen worden vaak lasrobots gebruikt, zoals laserlasrobots maar er zijn ook lasrobots die lasverbindingen maken met behulp van het TIG-lasproces en MIG/MAG-lasproces. Ook orbitaal lassen is een vorm van een geautomatiseerd lasproces. Bij OP-lassen (onder poederdek lassen) wordt ook in bepaalde mate gebruik gemaakt van geautomatiseerd lassen.

Al deze lasprocessen verschillen van handlassen omdat met handlassen de lasser zelf de toorts boven het smeltbad beweegt en zelf indien nodig lastoevoegmateriaal in het smeltbad aanbreng. Daardoor heeft een handlasser grote invloed op de kwaliteit van de lasverbinding. Een handlasser moet over een goede lastechniek beschikken.

Handlassen is vakwerk
In tegenstelling tot geautomatiseerde lasprocessen is lassen met de hand echt vakwerk. Dit houdt in dat de lasser over speciale (hand)vaardigheid moet beschikken. Lassers die bedreven zijn in handlassen zijn vakmensen. Het is overigens niet zo dat elke handlasser op dezelfde manier last. De snelheid waarmee ze lassen kan verschillen en ook de positie van de lastoorts ten opzichte van het smeltbad kan verschillen. Daarnaast kunnen handlassers ook hun lasapparaat op verschillende manieren instellen. Sommigen kiezen voor veel ampère om sneller te lassen en andere lassers kiezen juist voor wat minder ampères om langzamer en zorgvuldiger te lassen.

Een handlasser werkt overigens niet alleen met zijn of haar handen. Ze moeten ook goed nadenken over de warmte-inbreng in het werkstuk. Warmte zorgt namelijk voor vervorming en daarmee moet rekening worden gehouden. Vanwege de kwaliteitsnormen die steeds strenger worden moeten veel lasprocessen voldoen aan lasmethodekwalificaties. Deze lasmethodekwalificaties zijn bedrijfsgebonden. Vaak moet een lasser ook gekwalificeerd worden doormiddel van een lasserkwalificatie. Een handlasser leest in de lasmethodebeschrijving hoe de lasverbinding gemaakt dient te worden in het werkstuk. In deze lasmethodebeschrijving staat ook werk lastoevoegmateriaal gehanteerd moet worden en welk lasproces moet worden gebruikt. ook de laspositie is aangegeven.

Stereolassen
Stereolassen is een voorbeeld van een lasproces dat eigenlijk alleen met de hand kan worden uitgevoerd. Hierbij wordt gebruik gemaakt van twee TIG lassers die een groot RVS werkstuk moeten lassen. Hierbij wordt gebruik gemaakt van een inert beschermingsgas. Dit wordt aan de achterkant van de lasverbinding door een handlasser op het smeltbad aangebracht zodat het smeltbad beschermd wordt tegen schadelijke invloeden uit de omgeving en de atmosfeer. De andere handlasser maakt met zijn lastoorts het smeltbad en voegt met de hand het lastoevoegmateriaal toe. De twee handlassers die het stereolassen uitvoeren moeten echt vakmannen zijn die goed met elkaar kunnen samenwerken.

Handlassers zijn niet altijd allround
Een handlasser kan uit de hand lassen maar dat houdt niet in dat hij of zij elk lasproces kan uitvoeren. Er zijn bijvoorbeeld handlassers die uitstekend MIG/MAG kunnen lassen maar er zijn ook handlassers die goed TIG kunnen lassen. Deze lasprocessen zijn veel voorkomend en er zijn handlassers die beide lasprocessen beheersen hoewel ze wel in uitvoering en toepassing verschillen. Verder is lassen met beklede elektrode (BMBE) lassen een lasproces dat vaak met de hand wordt uitgevoerd. Ook autogeen lassen (met vlam) is een handlasproces.

Handlassen als tegenhanger van geautomatiseerd lassen
Ten opzichte van automatische lasprocessen heeft handlassen een aantal voordelen en nadelen. Handlassen biedt meer vrijheid voor de lasser. De lasser zal zelf zijn of haar lastoorts in positie moeten brengen en kan daardoor op plekken komen waar een grote lasrobotarm meestal niet bij kan. Voor moeilijk laswerk is daarom een handlasser geschikter dan een geautomatiseerd lasproces. Daarnaast moet een lasrobot geprogrammeerd worden en dat kost tijd. Daarom is een geautomatiseerd lasproces geschikter voor grotere series omdat men anders voor elk nieuw afwijkend product weer een nieuwe programmering moet invoeren.

Handlassen is echter wel een langzamer proces dan een geautomatiseerd lasproces. Daarom is handlassen weer minder geschikt voor grote series. Verder biedt een geautomatiseerd lasproces constant een bepaalde kwaliteit en dat kan bij handlassen verschillen omdat dat de kwaliteit van de handlassen in sterke mate afhankelijk is van de vaardigheden van de handlasser. Dat probeert men te ondervangen met lascertificaten die een lasser zou moeten behalen om aan bepaalde werkstukken te mogen lassen.

Wat is het verschil tussen pijp en buis?

In de techniek maakt men gebruik van zowel pijp als buis. Over het algemeen zijn pijpen en buizen onderdelen van installaties of machines. Kortom het zijn slechts gedeeltes van een werktuigen of installaties. Zowel een pijp als een buis is een hol onderdeel met een cilindrische vorm. Buizen en pijpen worden gemaakt van verschillende metalen en metaallegeringen en kunnen op het gebied van afmetingen en wanddikte verschillen. Daarnaast bestaat en er ook nog verschillen tussen pijp en buis op algemeen gebied. Deze verschillen worden in de alinea’s hieronder duidelijk gemaakt.

Wat is pijp precies?
Een pijp is iets anders dan een buis. Veel leken weten dit niet maar monteurs in de installatietechniek en pijpfitters weten het verschil vaak wel. Allereerst is er het verschil in de maatvoering. De maat van een pijp is gebaseerd op de binnendiameter. Dit wordt ook wel de inwendige diameter genoemd en afgekort met de letters ID. Men zegt ook wel dat een pijp aan de binnenzijde is getolereerd.

De maatvoering van een pijp wordt over het algemeen nog aangegeven in Engelse inches. Deze maatvoering wordt ook wel Engelse duim genoemd en is precies 25,4 mm. Naast de maatvoering of maataanduiding is ook de buitenkant van de pijp minder nauwkeurig afgewerkt dan een buis. Vaak voelt een pijp ruw aan en als er sprake is van pijp van koolstofstaal dan is het goed mogelijk dat er wat vliegroest op aanwezig is. De buitenkant van een pijp kan een kleine afwijking vertonen op het gebied van rondheid en daarnaast kan ook de wanddikte (WD) een beetje afwijken. De binnenkant van een pijp is over het algemeen wel goed glad afgewerkt.

Er zijn verschillende soorten pijpen. Bekende soorten zijn stoompijp, vlampijp en gaspijp. Deze pijpen worden door pijpfitters en dikwandige installatiemonteurs gebruikt. Pijpen kunnen op verschillende manieren aan elkaar bevestigd worden. Men kan on-uitneembare verbindingen maken doormiddel van smeltlasverbindingen. Het TIG-lasproces en het autogeen lasproces worden nog regelmatig gebruikt voor deze verbindingen op de bouwlocatie. Men kan echter ook flenzen aanlassen zodat leidingen met flensverbindingen kunnen worden gemonteerd op locatie.

Een andere mogelijkheid is het snijden van schroefdraad op pijp. Hierdoor kunnen pijpen doormiddel van schroefdraadkoppelingen aan elkaar bevestigd of gefit worden. het snijden van schroefdraad gebeurd doorgaans op pijpen met een diameter tot drie inch.

Wat is een buis precies?
Een buis verschilt van een pijp. Allereerst is de wanddikte van een buis veel dunner dan de wanddikte van een pijp. Daardoor kun je op buis geen schroefdraad snijden. De buitenzijde van een buis is glad evenals de binnenkant. Een buis is een jonger product dan een pijp en de maatvoering is ook minder traditioneel. Men geeft de maat van een buis aan in millimeters. Daarbij meet men de buitenzijde (UD = uitwendige diameter) van de buis en hanteert deze als maatvoering, men zegt ook wel dat een buis aan de buitenzijde is getolereerd.

Verder is een buis in tegenstelling tot een pijp wel perfect rond. Pijpen worden met een andere methode aan elkaar bevestigd dan buizen. Bij buizen schuift men fittingen over de buis heen. Deze fittingen worden ook wel buisfittingen genoemd en zijn er in verschillende vormen en maten. Er kan bijvoorbeeld gebruik worden gemaakt van knelkoppelingen en knelverbindingen.

Tot slot is het belangrijk om te weten dat er in de praktijk nogal wat verwarring kan optreden met betrekking tot de afmetingen van een pijp of buis. Daarom is het belangrijk dat men bijvoorbeeld bij een aanvraag of bestelling duidelijk aangeeft wat voor afmetingen men wenst. Dan kan men het hebben over de binnendiameter, buitendiameter, wanddikte en een omschrijving geven van de zoals kwaliteit, finish etc. Ook de normen (EN en ASME) zijn van belang.

Wat is een fitting tussen pijpen?

Een fitting is een uitneembare verbinding tussen twee onderdelen door bijvoorbeeld gebruik te maken van schroefdraad. Een fitting is een ruim begrip dat onder andere in de elektrotechniek wordt gebruikt voor het bevestigen van een lamp. Het gedeelte waar de lampvoet in bevestigd wordt is de fitting. Het woord ‘fitting’ wordt echter ook gebruikt in de onderhoudstechniek, installatietechniek en leidingbouw. In dat geval gebruikt men het wordt fitting als verbinding tussen pijpen. Daarom noemt men die verbindingen ook wel pijpfittingen. Iemand die pijpfittingen aanbrengt wordt ook wel een pijpfitter genoemd. Voordat men weet wat een pijpfitting precies is moet men weten wat een pijp is. Hierover gaat de volgende alinea.

Wat is een pijp?
Men gebruikt in de praktijk regelmatig de termen buis en pijp regelmatig door elkaar. Er is echter een wezenlijk verschil tussen een pijp en buis. Dit heeft te maken met de maatvoering. De maat van een pijp wordt aangegeven op basis van de binnendiameter, met andere woorden een pijp is aan de binnenzijde getolereerd (DN).

Over het algemeen geeft men de maatvoering van pijp aan in inches. De buitenkant van pijp ruw en de wanddikte en de rondheid kunnen in geringe mate afwijkingen vertonen.

Bekende soorten pijp zijn gaspijp, stoompijp en vlampijp. Veel pijpen en fittingen worden met elkaar verbonden doormiddel van smeltlasverbindingen. Daarnaast kan men ook gebruik maken van schroefdraadverbindingen. Dit gebeurd met pijpen met diameters tot 3 inch. Naast schroefdraadverbindingen kan men ook flensverbindingen gebruiken voor pijpstukken.

Wat is een buis?
Op pijp kan men tot een bepaalde diameter schroefdraad snijden. Daarvoor is een buis echter niet geschikt. Een buis heeft een veel geringere wanddikte dan pijp. Buizen worden op een andere manier aan elkaar verbonden. Hierbij maakt men gebruik van zogenoemde buisfittingen. Deze fittingen schuift men over de buizen heen. Vervolgens kan men een knelverbinding maken met een apparaat maar er zijn ook persfittingen. De kwaliteit van de verbinding is voor een groot deel afhankelijk van de wand. De wand van een buis ziet er anders uit dan de wand van een pijp. Een buis is ook aan de buitenkant glad en precies rond. De wanddikte van de buis is, zoals eerder benoemd, ook geringer dan een pijp.

De maat van een buis wordt op basis van een buitendiameter aangegeven. Dit wordt in Nederland in mm aangeduid. Men zegt ook wel dat een buis aan de buitenzijde is getolereerd.

Wat is een pijpfitting?
Een pijpfitting is een verbinding tussen twee pijpen. Deze verbinding is uitneembaar maar men treft wel speciale voorzieningen die er voor zorgen dat de pijpfitting niet uiteen kan gaan door de vloeistoffen of het gas die er door getransporteerd worden. Een pijpfitting wordt door een pijpfitter aangebracht. Dit kan een loodgieter of cv-monteur zijn. De schroefdraad kan indien gewenst op de buizen of pijpen worden gesneden door een schroefdraadsnijder. Om er voor te zorgen dat de pijpen niet uit elkaar kunnen raken en geheel waterdicht zijn maakt men gebruik van teflon tape, hennep of fitterskit. Deze afdichtmaterialen worden over het schroefdraad heen aangebracht, vervolgens wordt het andere deel van de leiding (sok, bocht of T-stuk) over het schroefdraad met het afdichtmiddel heen gedraaid. Zo ontstaat, als het goed is, een waterdichte verbinding tussen twee leidingdelen.

Naast fittingen die gebaseerd zijn op schroefdraad zijn er ook fittingen die tot stand komen door zogenoemde persverbindingen. Hierbij worden de leidingen doormiddel van een speciaal persapparaat aan elkaar geperst. Als men persverbindingen aanbrengt vervormt men de pijp meestal permanent. Het materiaal dat men voor de pijp gebruikt moet dus vervormbaar zijn. Het ene deel wordt bijvoorbeeld in het andere deel geschoven om vervolgens de leidingen aan elkaar te persen met een speciaal daarvoor ontworpen apparaat.

Fitten of lassen
Men gebruikt vaak naast het woord fitter ook het woord lasser. Deze twee beroepen komen allebei in de installatietechniek en leidingbouw voor. Over het algemeen wordt in dit verband met een fitter iemand bedoelt die de leidingen aan elkaar koppelt met een fitting. Ook kan een fitter de leidingen met een kleine hechtlas aan elkaar verbinden. In dat geval volgt een lasser die de leiding aflast zodat er een permanente lasverbinding ontstaat. Een lasverbinding is in beginsel niet uitneembaar en moet daarom door een specialistische lasser worden aangebracht.

Lasverbindingen in de installatietechniek worden doormiddel van het autogeen of TIG lasproces aangebracht. In de procesindustrie zoals de zuivelindustrie maakt men veel gebruik van roestvaststalen leidingen. Deze leidingen worden doormiddel van het TIG lasproces aangebracht. In de zuivel worden zeer hoge eisen gesteld aan de binnenkant van de leidingen. De lassen moeten door de zuivellasser zo worden aangebracht dan de binnenkant goed uitvloeit zodat er geen bacteriën achter de lasnaad kunnen achterblijven.

Er zijn verschillende technieken zoals het wikken (ook wel walking the cup genoemd) om deze lasverbindingen te realiseren. De meeste lasverbindingen in de zuivel moeten conform een bepaalde lasmethodekwalificatie (LMK) worden aangebracht. Een lasser dient dan een lascertificaat te behalen waarin is aangegeven dat hij of zij een dergelijke las met een specifiek lasproces in een bepaalde positie (meestal G6 of HL-45) mag aanbrengen.

Koppel fitter en lasser
Lassers die over een dergelijk lascertificaat beschikken worden in de praktijk meestal alleen als lassers ingezet en niet als fitter. Over het algemeen maakt men een ‘koppel’ van een fitter en een lasser. De fitter gaat voor de lasser uit om de leidingen in te meten en de tijdelijke hechtlas aan te leggen. De lasser maakt het leidingwerk vervolgens met hoogwaardige lasverbindingen af. Op die manier werkt men samen aan een professionele leiding en wordt iedereen in zijn of haar vakdiscipline ingezet. Men kijkt bij het fitten en lassen vaak naar de wanddikte van de pijp. Om die reden geeft een leidinglasser vaak aan dat hij of zij ervaring heeft met dikwandige (stoompijp) of dunwandige leidingen.

Wat is een wikker en wat doet een wikker (TIG-lasser)?

Het woord ‘wikker’ is een aanduiding voor bepaalde lassers die meestal werkzaam zijn in de zuivelindustrie en voedingsmiddelen industrie. Wikker is afgeleid van wikken. Het wikken is een lastechniek die kan worden toegepast met het TIG lasproces. In het Engels wordt wikken ook wel walking the cup genoemd. Met deze aanduiding wordt duidelijk dat men op een bepaalde manier met de lastoorts beweegt om een las tot stand te brengen.

Wat doet een wikker?
Tijdens het wikken maakt de lasser met de lastoorts 8 vormige bewegingen over de lasnaad heen. Daarbij draait de lastoorts in een continue proces over het smeltbad heen. Er wordt tijdens het wikken een extra slag gemaakt over het smeltbad omdat de toorts iets teruggedraaid wordt. Daardoor blijft het smeltbad langer vloeibaar. Dit heeft tot gevolg dat de las beter uitvloeit aan de bovenkant maar ook aan de onderkant. Als men zowel aan de bovenkant als aan de onderkant voldoende backinggas aanbrengt op het lasproces dan vloeit de las mooi uit en wordt een hoogwaardige lasverbinding tot stand gebracht.

Is een wikker een zuivellasser?
De hoogwaardige lasverbinding die in de vorige alinea is benoemt is van belang voor de zuivelindustrie. In deze industrie moet men onder strenge hygiënische normen werken. De leidingen die worden gebruikt voor het transporteren van zuivel mogen geen oneffenheden of gaten bevatten omdat daar voedingsresten achter kunnen blijven die vervolgens kunnen gaan rotten. De ontwikkeling van bacteriën moet worden voorkomen in leidingen.

Daarom moeten de lasverbindingen goed vloeien aan de binnenkant. Wikkers gebruiken daarvoor een speciale techniek. Deze techniek hoeft echter niet beslist te worden toegepast om tot een goede zuivellas te komen. Een wikker zou aan de slag kunnen in de zuivelindustrie maar dat hoeft niet. Daarom is niet elke zuivellasser een wikker en wordt niet elke las in de zuivel doormiddel van wikken aangebracht.

Wat is wikken of walking the cup met TIG lassen?

Wikken is een lastechniek die wordt gebruikt voor het TIG lasproces. Het wikken wordt ook wel in het Engels walking the cup genoemd. Dit kan in het Nederlands worden omschreven als het lopen met de lastoorts. Dit beschrijft de beweging die men maakt met de lastoorts tijdens het wikken. Het wikken wordt vooral toegepast in het lassen van pijpen en buizen die gemaakt zijn van roestvast staal (RVS). Men kan echter ook pijpen en buizen lassen die gemaakt zijn van eenvoudige staallegeringen zoals  koolstofstaal en speciale staallegeringen zoals duplex.

Wikken als lasmethode
Men loopt met de mond/ cup van de lastoorts over de lasnaad. Daarbij maakt men 8 vormige bewegingen. Deze achtjes zijn een continue proces dat men met het lopen zou kunnen vergelijken. Van links naar rechts beweegt men met de lastoorts over het smeltbad om dan vervolgens weer iets terug te zakken om het smeltbad vlak onder de opening van de lasnaad nog vloeibaar te houden. Met de extra slag die men tijdens het wikken maakt wordt het lasproces wel arbeidsintensiever. Deze extra inspanning is wel nuttig omdat de kwaliteit van de lasverbinding door het wikken beter wordt.

Smeltbad tijdens wikken
Het smeltbad blijft tijdens het wikken langer heet en vloeibaar waardoor de doorlas beter wordt. Het smeltbad zakt iets naar beneden tot deze de binnenkant van de leiding bereikt. Daar vloeit het smeltbad beter uit en blijft het warmtebeeld strak. Hierdoor kan men meer kwaliteit realiseren. De las oogt netter zowel aan de binnenkant als aan de buitenkant van de leiding (buis of pijp).

Wikken moet je leren
Wikken is een lasproces dat door ervaren TIG lassers moet worden uitgevoerd. Tijdens het wikken of walking the cup kan een lasser,  als deze onervaren is, de lasverbinding beschadigen doordat de lasser met de lastoorts het smeltbad raakt. Dan ontstaan er kleine puntjes in de lasnaad en dat zorgt voor een minder strak resultaat.

Hoe snel kun je wikken?
Wikken kan men met verschillende snelheden uitvoeren. Over het algemeen kiest men voor een strak resultaat voor een instelling van het lastoestel met een laag aantal Ampères. Hoe lager het aantal ampères hoe langzamer men moet lassen. Hoe hoger het aantal ampères hoe sneller men kan lassen. Niet elk materiaal en niet alle materiaaldiktes zijn even geschikt voor het lassen onder hoge ampères. Een lasser moet van te voren zelf inschatten wat verstandig is of moet het wps of de lasmethodekwalificatie er op naslaan.

Beschermingsgas/ backinggas
Uiteraard moet er bij het wikken wel gebruik worden gemaakt van beschermingsgas oftewel het backinggas. Dit is bij TIG lassen een inert gas dat er voor zorgt dat de lasnaad wordt beschermd tegen schadelijke invloeden in de lucht rondom het lasproces. Het backinggas wordt rondom de toorts aangebracht zodat de lasnaad aan de bovenkant tegen corrosievorming is beschermd. Daarnaast wordt het backinggas ook in de pijp of buis aangebracht om voor een goede binnenlas te zorgen. Deze binnenlas of doorlas moet perfect glad zijn als men de leiding in de voedingsmiddelenindustrie zoals de zuivelindustrie wil aanbrengen in een installatie waar voedingsmiddelen doorheen stromen.

Toevoegmateriaal of niet bij wikken?
Wikken kan men met en zonder lastoevoegmateriaal. Bij pijpen met een wanddikte tot 2 millimeter hoeft een lasser niet beslist draad toe te voegen aan het lasproces. Toch kan het wel vereist zijn voor de stevigheid van de lasverbinding. Boven de 2 millimeter voegt een lasser meestal wel draad toe tijdens het wikken of walking the cup. Ook bij pijpen met een diameter van 2 inch (2 duims) of meer voegt men in de regel wel lasdraad toe aan het lasproces.

Wikker
Een lasser die goed kan wikken noemt zichzelf ook wel een wikker. Een ervaren wikker bewijst zichzelf in de praktijk. Een wikker moet zonder problemen in de praktijk een leiding in een hoek van 45 graden (Hoeklas 45 oftewel HL45)  rondom kunnen lassen doormiddel van het TIG lasproces. Deze positie wordt ook wel G6 genoemd. Als je kunt wikken in deze positie dan ben je met recht een vakkracht.

Wat is fotolassen en wat doet een fotolasser?

In de metaaltechniek hoor je soms de functienaam ‘fotolasser’ ook vraag men wel om lassers die kunnen ‘fotolassen’. Deze benaming is behoorlijk ingeburgerd in de metaalsector maar is behoorlijk vaag. Daarom is in dit artikel informatie gegeven over de termen fotolassen en fotolasser.

Wat is fotolassen?

Fotolassen is een werkwoord maar men kan eigenlijk niet zeggen dat iemand gaat fotolassen. Ook kan iemand niet zeggen zou je die fotolassen even kunnen maken.  De term fotolassen is enkel een benaming voor de kwaliteit waaraan bepaalde lassen moeten voldoen.

Als men het over fotolassen heeft bedoelt men dat de lassen aan bepaalde kwaliteitseisen moeten voldoen. Deze kwaliteitseisen zijn vastgelegd in een lasmethodebeschrijving. De lasmethodebeschrijving is geënt op de lasmethodekwalificatie die het bedrijf heeft behaald. In de lasmethodebeschrijving is vastgelegd hoe een las gemaakt moet worden en via welk lasproces de las gemaakt moet worden door de lasser. Daarin kan zijn vastgelegd dat de las fototechnisch gecontroleerd moet worden. De controle van de las kan namelijk door röntgenfoto’s worden gedaan.

Röntgenfoto’s van lassen

Doormiddel van röntgenfoto’s kan men controleren of de las inderdaad goed is aangebracht door de lasser. Met röntgenfoto’s kan men zien of er geen insluitingen of andere onzuiverheden in de las aanwezig zijn. Een fotolas is pas echt een fotolas als de las de röntgenfototest kan doorstaan. Een voordeel van röntgenfoto’s is dat men de las niet hoeft te vernietigen tijdens deze test. De las blijft in tact. Daarom noemt men deze onderzoeksmethode ook wel Niet Destructief Onderzoek. Dit wordt ook wel afgekort met NDO. Destructief Onderzoek kan ook worden uitgevoerd. Hierbij wordt de las bijvoorbeeld doorgezaagd of uitelkaar getrokjen met een trekproef of breekproef. Het spreekt voor zich dat de lasverbinding dan vernietigd is.

Wat doet een fotolasser?

Een fotolasser is in feite geen functieaanduiding. Iemand is geen fotolasser maar een lasser kan wel lassen leggen conform een lasmethodebeschrijving. Een lasser moet een lascertificaat behalen conform de lasmethodebeschrijving en de lasmethodekwalificatie van een bedrijf. Hiervoor dient de lasser een proefstuk maken met een onafhankelijke getuige er bij. Dit proefstuk wordt gecontroleerd in een speciaal testlab. Tijdens de testen wordt de las op verschillende manieren gecontroleerd.  De manier van controleren worden vastgelegd in het lascertificaat.  Hierin kan bijvoorbeeld staan dat eem breekproef is toegepast of dat men met geluidsgolven (ultrasoon) getest heeft. Ook testen doormiddel van röntgenfoto’s kunnen vastgelegd worden op het lascertificaat.  In het laatste geval zou men kunnen zeggen dat een lasser een las kan maken op fototechnisch niveau. Dan zou je kunnen spreken van een fotolas en een fotolasser.

Aandachtspunten bij het woord fotolasser

Als iemand op fotoniveau kan lassen weet je eigenlijk nog heel weinig. Want je moet weten welk lasproces is gebruikt bij het proefstuk waar de lasser zijn of haar certificaat mee heeft behaald.  Ook moet je weten welk materiaal is gelast en welke dikte dit materiaal had. De vorm van de lasnaad is ook belangrijk. Was dit bijvoorbeeld een V-naad, een X-naad of een K-naad. Het toevoegmateriaal is eveneens belangrijk is er bijvoorbeeld gebruik gemaakt van poedergevulde draad (rutiel), beklede elektrode of andere lasdraad. Dit alles wordt vastgelegd op het lascertificaat van de lasser. Bovendien staat op dit lascertificaat in welke positie de lasser de las heeft aan gebracht. Voorbeelden hiervan zijn onder de hand, uit de zij, stapelen en boven het hoofd. Een bijzondere positie die vaak vereist is in het leidinglassen is G6 of HL 45.

Hierbij moet de lasser een buis of pijp met een bepaalde wanddikte in een positie van 45 graden plaatsen en dan rondom lassen. Een fotolasser kan een mengeling van bovenstaande gegevens op xijn lascertificaat hebben staan. Daarom weet je met de term fotolasser niet precies wat de lasser kan en mag lassen. Als men om een fotolas of fotolasser vraagd zal je altihd moeten nagaan welke lascertificaten precies vereist zijn. Daarbij is ook nog een verschil of de las conform de Europese Normering is gelegd, dit wordt aangeduid met EN, of de Amerkaanse normering welke wordt aangedijd met AWS.

Kun je brons of een bronslegering lassen?

Brons is een legering die bestaat uit koper en tin. Het grootste bestandsdeel van deze legering is koper aangevuld met een tingehalte van ongeveer 10 tot 30%. Een gietlegering van brons in combinatie met tin wordt aangeduid als: G Cu Sn 14. Hierbij staat de letter ‘G’ voor het feit dat het om een gietlegering gaat. De letters ‘Cu’ is het scheikundig symbool voor koper, in het Latijns Cuprum, atoomnummer 29. De letters ‘Sn’ vormen het scheikundige symbool van tin, in het Latijns ‘stannum’, atoomnummer 50.

De gietlegering heeft achter de letters ‘Sn’ het getal ‘14’ staan. Dit getal duidt het percentage tin aan ten opzichte van het koper. Omdat koper het eerste wordt genoemd in de legeringssamenstelling is dit het grootste bestandsdeel van de legering. Brons bestaat dus voor het grootste gedeelte uit koper aangevuld met een klein percentage tin.

Waarom wordt tin aan koper toegevoegd?
Tin wordt om verschillende redenen gelegeerd met koper. Koper is een vrij zacht materiaal door de toepassing van tin wordt het de legering met koper ongeveer twee keer zo hard. Daarnaast zorgt tin er voor dat het smeltpunt van de legering lager wordt. Hoe meer tin wordt toegevoegd hoe lager het smeltpunt. Gemiddeld ligt het smeltpunt van brons rond de 950°C (bij een legering van 85% koper en 15% tin) terwijl koper een smeltpunt heeft van 1083°C.

Tin zorgt er verder voor dat koper minder gassen opneemt zodat er tijdens het stollen minder luchtinsluitsels ontstaan. Daarnaast zorgt tin er in combinatie met koper voor dat er minder krimp optreed tijdens het afkoelen. Verder zorgt tin er voor dat de verhitte legeringsmassa een betere vloeibaarheid heeft waardoor de massa beter gegoten kan worden in verschillende vormen.

De lasbaarheid van brons
De toevoeging van tin zorgt voor belangrijke positieve eigenschappen van brons. Een nadeel van tin is echter dat dit metaal een ongunstige invloed heeft op een lasproces. Wanneer brons eenmaal is uitgehard is het materiaal taai en goed bestand tegen corrosie. Er ontstaat echter wel een oxidehuid die het materiaal beschermd tegen invloeden van buitenaf. Tin oxideert echter makkelijker dan koper en daardoor kan tinoxide tijdens het lassen in de las worden ingesloten. Dit is nadelig voor de sterkte van de las.

Verder zorgt tin er voor dat de gevoeligheid voor warmtescheuren met ongeveer 10 procent toeneemt. Omdat tijdens het lassen veel warmte wordt ingebracht om een smeltbad te creëren kunnen warmtescheuren ontstaan rondom het verwarmde metaal en het afgekoelde metaal.

Koper heeft echter ook nadelen die de lasbaarheid ongunstig beïnvloeden. Koper geleid warmte namelijk zeer goed dit warmtegeleidingsvermogen zorgt er voor dat de warmte ook snel weer wordt afgevoerd waardoor bindfouten kunnen ontstaan tijdens het lassen.

Ondanks deze nadelen kan men brons wel lassen. Men zal de eigenschappen van de legering echter wel goed in acht moeten nemen bij de keuzen van het lasproces.

Welke lasprocessen kan men gebruiken om brons te lassen?
Voor het lassen van brons kunnen verschillende lasmethodes worden gehanteerd. Over het algemeen past men MIG lassen en TIG lassen toe. Hierbij wordt gebruik gemaakt van inerte beschermgassen. Dit zijn gassen die geen reactie aangaan met zuurstof en andere stoffen in de omgeving. Door de toepassing van inerte gassen wordt de kans op de ontwikkeling van oxide tijdens het lasproces verkleind. Het beschermgas dat tijdens brons lassen over het algemeen worden gebruikt is argon of een combinatie van argon en helium. Naast MIG en TIG lassen kan ook elektrodelassen worden toegepast maar dit gebeurd bijna nooit.

Lasdraad voor brons lassen
Het lassen van brons vereist niet alleen een speciale lasmethode en beschermgas, ook aan de lasdraad van brons worden eisen gesteld. Deze lasdraad moet namelijk passen bij het materiaal dat gelast moet worden. Brons bestaat hoofdzakelijk uit koper en tin. Daarom wordt bij het lassen van brons speciaal brons lasdraad toegepast. Er zijn die varianten brons lasdraad:

  • CuSn,
  • CuSn6
  • CuSn12

De legering CuSn12 wordt over het algemeen gebruikt bij het verrichten van laswerkzaamheden aan bronzen producten die zijn gegoten. Dit komt omdat deze legeringen over het algemeen een percentage van ongeveer 12 procent tin bevatten. De overige twee lasdraden worden gebruikt bij het lassen van koper en lagerbrons. Hierbij zorgt tin als element in de samenstelling voor gunstiger mechanische waarden zoals loop eigenschappen en een beter vloei van de las tijdens het lasproces.

Wat is plasmalassen en hoe wordt dit lasproces uitgevoerd?

Plasmalassen is een lasmethode die verwant is met TIG-lassen. Bij plasmalassen wordt gebruik gemaakt van plasma. Dit is ook het geval bij TIG lassen. Het vormen van plasma gebeurd door het creëren van een hoge elektrische spanning tussen een wolfraamelektrode en het werkstuk. Hierbij wordt gebruik gemaakt van  twee aparte gastromen: het plasmagas en een inert beschermgas. Het plasmagas stroomt rond de wolfraamelektrode richting het werkstuk. Het potentiaalverschil tussen de wolfraamelektrode en het werkstuk zorgt er voor dat het plasmagas elektriciteit geleid. Deze elektrische geleiding zorgt er voor dat er een plasmaboog ontstaat tussen het werkstuk en de elektrode. Het beschermgas zorgt er voor dat het smeltbad tijdens het lassen wordt beschermt tegen invloeden van buitenaf.

Verschil tussen plasmalassen en gewoon TIG-lassen
In tegenstelling tot het gewone TIG-lassen blijft de wolfraamelektrode dieper in de lastoorts verborgen. Bij het gewone TIG-lassen steekt de wolfraamelektrode enkele millimeters uit de lastoorts. De vorm van het mondstuk dat bij plasmalassen worden gebruikt is anders dan bij TIG-lassen. Het plasmagas wordt met hoge snelheid uit de lastoorts geblazen. Dit zorgt er voor dat de plasmabundel goed kan worden ingesnoerd. Het insnoeren van de plasmabundel zorgt er voor dat er veel hogere temperaturen bereikt kunnen worden dan met gewoon TIG-lassen het geval is. doormiddel van plasmalassen kan een temperatuur worden behaald die oploopt tot wel 24000 graden. Rondom het plasmagas wordt een apart beschermgas geblazen tijdens het lassen. Dit beschermgas draagt er onder andere aan bij dat de plasmabundel tijdens het lassen zeer smal gehouden kan worden. Daarnaast zorgt het beschermgas er voor dat het werkstuk beschermd is tegen invloeden zoals zuurstof. Bij TIG-lassen wordt de koeling van het mondstuk gedaan door het beschermgas. Vanwege de hoge temperaturen is dat bij plasmalassen niet voldoende. Daarom wordt bij plasmalassen het mondstuk van de lastoorts ook met water gekoeld.

Verschillende varianten van plasmalassen
Net als andere lasprocessen zoals het MIG/MAG lasproces kan ook plasmalassen op verschillende manieren worden uitgevoerd. Dit heeft onder andere te maken met de materiaaldikte of plaatdikte van het werkstuk. Ook de eisen met betrekking tot nauwkeurigheid zijn van invloed op de keuze voor een bepaalde variant van plasmalassen. Hieronder staan de drie verschillende varianten van plasmalassen.

  • Microplasmalassen, tot 15 A. Deze variant van plasmalassen wordt gebruikt voor het maken van een lasverbinding in werkstukken die vervaardigd moeten worden van zeer dunne plaat. Er wordt hierbij gebruik gemaakt van zeer dunne draden vanaf 0,1 millimeter dikte.
  • Melt-in plasmalassen, 15 tot 200 A. Deze variant van plasmalassen is gelijkwaardig aan het TIG-lassen.  Melt-in plasmalassen heeft echter een maar een stabielere boog en daarnaast een diepere inbranding.
  • Keyhole plasmalassen, boven 100 A. Deze variant van plasmalassen zorgt voor een grote en diepe inbranding. Daarnaast kan met deze lasmethode een hoge lassnelheid worden gerealiseerd.

Veiligheid en gezondheid met betrekking tot het lasproces

Lassen wordt regelmatig gedaan in de metaaltechniek en de werktuigbouwkunde. Doormiddel van lassen worden metalen of kunststoffen onlosmakelijk aan elkaar verbonden. Er zijn verschillende lasprocessen die in de praktijk door een lasser kunnen worden uitgevoerd. De keuze van het lasproces is afhankelijk van de metaalsoort, de materiaaldikte en de kwaliteitseisen die aan het werkstuk worden gesteld. Lassen is een productieproces dat niet zonder risico’s is voor de lasser zelf en zijn of haar naaste omgeving. Daarom moet een lasser een aantal veiligheidsvoorschriften goed in acht nemen.

Veiligheid en gezondheid bij lasprocessen bevorderen
Het bevorderen van veilig werken tijdens het lassen is belangrijk om letsel te voorkomen. Tijdens het lassen kunnen gloeiendhete metaalspetters vrijkomen die brandwonden kunnen veroorzaken. Daarom is het belangrijk dat lassers zich goed tegen deze lasspetters beschermen. Brandwerende handschoenen die speciaal voor lassers zijn ontworpen moeten daarom te allen tijde door lassers worden gedragen. Ook brandwerende of brandvertragende kleding voor lassers is verplicht. De isolatie van de handschoenen van de lasser en het schoeisel van de lassers is extra belangrijk bij elektrische lasprocessen.

In de directe omgeving van de lasser mag tijdens het lassen geen brandbaar materiaal aanwezig zijn. Door de lasspetters kan brandbaar materiaal zoals karton of synthetische kleding eenvoudig vlam vatten. Hierdoor kan een grote brand ontstaan.

Verder dient de lasser rekening te houden met schadelijke gassen die tijdens het lasproces vrijkomen. Lasrook dient doormiddel van een goede afzuiginstallatie van de werkplek van de lasser weggezogen te worden.

Tot slot dient de lasser zijn of haar ogen te beschermen tegen het felle licht dat tijdens het lasproces vrijkomt. Een plasmaboog geeft tijdens het lassen fel licht dat schadelijke uv-stralen bevat. Daarom moet een lasser een lashelm of laskap dragen met een donker glaasje. Er zijn tegenwoordig ook flitskappen waarvan het glas automatisch donker wordt wanneer men gaat lassen.

De omgeving van de lasser moet echter ook geen last hebben van het uv-licht dat tijdens het lasproces vrijkomt. Daarom dient een lasser zijn of haar werkplek af te schermen met lasschermen. Door lasschermen te gebruiken kunnen mensen in de omgeving van de lasser niet in de plasmaboog kijken.

Een lasser moet zijn werkplek goed opruimen en moet er voor zorgen dat er geen ongelukken kunnen gebeuren terwijl de lasser aan het lassen is. Door het gebruik van een laskap kan een lasser namelijk weinig van zijn of haar omgeving waarnemen. Naderende heftrucks of personeel dat langs loopt wordt nauwelijks opgemerkt.

Veiligheid op de werkplek
Als een lasser de veiligheidsvoorschriften goed in acht neemt kan het lasproces goed worden uitgevoerd. Veiligheid en gezondheid is echter niet alleen iets dat de lasser zelf moet bewerkstelligen. Het bedrijf waar de lasser werkzaam is moet er voor zorgen dat de lasser de juiste materialen, gereedschappen en kleding krijgt om het werk professioneel uit te kunnen voeren. De arbeidsinspectie in Nederland ziet er op toe dat dit ook gebeurd.

Wat doet een stereo lasser of een simultaan lasser in de werktuigbouwkunde?

In de werktuigbouwkunde worden regelmatig stereolassers of simultaanlassers gevraagd. Dit zijn twee verschillende functiebenamingen waarmee in principe dezelfde functie wordt bedoelt. In onderstaande tekst worden de functies stereo lasser en simultaan lasser gebruikt. In de praktijk gebruikt men deze functienamen ook regelmatig naast elkaar binnen een bedrijf. Zo kan het voorkomen dat de ene lasser zich stereo lasser noemt en zijn collega noemt zich simultaan lasser terwijl ze in feite dezelfde werkzaamheden uitvoeren op de werkvloer.

Wat zijn de werkzaamheden van stereolassers of simultaanlassers?
Stereolassers en simultaanlassers zijn in de eerste plaats lassers. Meestal beheersen deze lassers het TIG lasproces op een hoog niveau omdat voor stereolassen over het algemeen TIG wordt gebruikt. Dit houdt in dat veel stereolassers TIG lassen beheersen op niveau 3 of hoger. Ze moeten meestal lassen in verschillende plaatdiktes en wanddiktes aanbrengen.

Het stereolassen houdt in dat deze las aan twee kanten tegelijk wordt gelegd. Hiervoor zijn twee lassers nodig. De ene lasser staat aan de binnenkant van het werkstuk, bijvoorbeeld een tank, de andere lasser staat aan de buitenkant. Beide lassers moeten er voor zorgen dat het smeltbad tijdens het lasproces goed gevormd wordt. Door een goed smeltbad ontstaat een goede las aan de buitenkant en aan de binnenkant.

Het is belangrijk dat niet alleen de lassers goed op elkaar afgestemd zijn. Ook de lastoestellen moeten op de juiste manier worden ingesteld. Het aantal ampères waarop het lastoestel moet worden ingesteld is onder andere afhankelijk van de wanddikte of plaatdikte van het werkstuk. Als deze wanddikte of plaatdikte vereist dat er met 130 ampère gelast moet worden zal men dit totaal over de twee stereo lassers of simultaan lassers moeten verdelen. Anders ontstaat er te veel warmte inbreng tijdens het lassen. Dit zorgt er voor dat het smeltbad teveel vloeit en er gaten ontstaan. Een goede las kan met een te hoge warmte inbreng niet worden gemaakt. Daarnaast kan ook het werkstuk door een te hoge warmte inbreng worden beschadigd.

Het totaal aantal ampères wordt verdeeld tussen de twee simultaanlassers of stereolassers.  Omdat in de praktijk meestal één van de twee lassers het toevoegmateriaal in het smeltbad aanbrengt wordt het totaal niet precies in twee gelijke helften verdeeld. Degene die het toevoegmateriaal aanbrengt zal met iets meer ampère lassen dan de andere lasser. Een totaal aantal ampères van 130 kan worden verdeeld in 70 ampère voor de lasser die lastoevoegmateriaal aanbrengt en 60 ampère voor de lasser die aan de andere kant staat. Naarmate de plaatdikte groter wordt zal het lastoestel ook op meer ampères moeten worden ingesteld.

Waarvoor wordt stereolassen of simultaanlassen gebruikt?
Stereolassen of simultaanlassen wordt toegepast voor aluminium en vooral voor werkstukken die gemaakt zijn van roestvaststaal. Hierbij kan gedacht worden aan grote RVS tanks voor de voedingsmiddelenindustrie. Daarnaast wordt stereolassen of simultaanlassen ook gebruikt voor leidingen met een grote diameter. De diameter moet groot genoeg zijn voor een lasser die aan de binnenkant de las gelijktijdig met een lasser aan de buitenkant kan aanbrengen. De reden waarom stereolassen en simultaan lassen veel wordt gebruikt in de zuivel en andere voedingsmiddelenindustrieën heeft te maken met de hoge eisen die aan de voedselhygiëne worden gesteld. Het stereolasproces of simultaanlasproces zorgt voor een perfecte doorlas aan de binnenkant van het werkstuk. Hierdoor ontstaan tijdens het lassen geen opstaande randen of andere oneffenheden waarachter voedingsresten en vuil kunnen hechten. Deze resten kunnen een bron van bacteriën vormen en daardoor de kwaliteit van het voedsel nadelig beïnvloeden.

Welke vaardigheden hebben stereolassers en simultaanlassers?
Lassers die werkzaam zijn in de zuivel moeten hoogstaande laskwaliteit leveren. Het lasproces dat voor simultaanlassen of stereolassen wordt gebruikt is meestal TIG. De lasser heeft doordat hij zelf handmatig toevoegmateriaal in het smeltbad brengt een goede controle over dit smeltbad en kan daardoor de kwaliteit van de las goed beïnvloeden. TIG lassers moeten gevoel hebben voor het lasproces en moeten in hoge mate nauwkeurig zijn. Als deze lassers werken aan werkstukken die in contact komen met voedingsmiddelen worden de kwaliteitseisen nog zwaarder. Vaak moeten lassers dan specifieke lascertificaten halen voordat ze een las in de zuivel of voedingsmiddelenindustrie mogen aanbrengen.

Wat is stereo lassen of simultaan lassen waarvoor dit lasproces gebruikt?

Stereo lassen is een speciaal lasproces waarvoor twee lasser nodig zijn. Het lasproces wordt gebruikt om een perfecte doorlas te maken. Stereo lassen wordt veel gebruikt in de bouw van grote RVS tanks en RVS leidingwerk met een grote diameter. Stereo lassen wordt ook wel simultaan lassen genoemd. Het woord simultaan betekend gelijktijdig. Dit houdt in dat twee lassers gelijktijdig, elk aan een kant, een las aanbrengen aan een werkstuk.

Waarvoor wordt simultaan lassen toegepast?
Simultaan lassen is niet eenvoudig. De lassers moeten goed samen kunnen werken en de snelheid waarmee ze lassen op elkaar kunnen afstemmen. Simultaan lassen wordt veel toegepast bij het lassen van RVS tanks en leidingen met een diameter die groot genoeg is om een lasser in de leiding te laten kruipen om de binnenkant te lassen. Hiervoor wordt met name het TIG lasproces gebruikt. TIG-simultaan lassen kan naast RVS ook voor andere metaalsoorten worden gebruikt. Hierbij kan gedacht worden aan koper en aluminium. Hieronder is beschreven hoe simultaan lassen wordt gedaan.

Hoe gaat simultaan lassen in zijn werk?
Bij TIG lassen voegen de lassers zelf handmatig het toevoegmateriaal aan het smeltbad toe. Meestal brengt één van de twee TIG simultaanlassers het lastoevoegmateriaal in het smeltbad aan. Hierdoor is er een goede controle op het smeltbad en dit komt de kwaliteit van de las ten goede. Doordat er bij simultaanlassen twee TIG lassers controle hebben op het smeltbad is de kwaliteit van het smeltbad aan beide kanten van het werkstuk als het goed is gelijk en wordt een perfecte doorlas tot stand gebracht. Deze perfecte doorlas is van belang voor de voedingsmiddelenindustrie. Hoe gladder de las aan de binnenkant van de tank of leiding hoe beter. Er kunnen dan geen vuil en voedselresten achter de lasnaad blijven zitten. Deze resten kunnen een bron van bacteriën worden en de kwaliteit en veiligheid van de voedingsmiddelen die in de tank of leiding stromen of aanwezig zijn nadelig beïnvloeden.

Instellen van lastoestel bij simultaan lassen
Het is belangrijk dat de stoombronnen zo geschakeld zijn dat ze elkaar niet aantrekken. Als voor de plaatdikte of wanddikte  130 ampère vereist is dan moet dit totaal worden verdeeld onder de twee lassers en twee lastoestellen. De ene lasser zal het lastoestel  op 70  ampère in moeten stellen en de andere 60 ampère. De lasser die de lasdraad toevoegt moet het lastoestel op het hoogste aantal ampères hebben want lasdraad koelt het smeltbad af. Over het algemeen wordt de draad in positie PF aan de bovenkant aangebracht in het beschermgas die om de vlamboog aanwezig is.

Lasposities voor simultaan lassen
Simultaan lassen wordt vooral gebruikt voor laspositie PF. De PF laspositie is een laspositie waarbij de las verticaal wordt aangebracht van beneden naar boven. Dit wordt ook wel stapelen genoemd. Daarnaast kan simultaanlassen ook worden gedaan in positie PC. Hierbij wordt een lasnaad uit de zij horizontaal aangebracht.

Hoe kan ik leren lassen en waar moet ik met lassen op letten?

Regelmatig worden er in op de technische arbeidsmarkt lassers gevraagd. Iemand die goed kan lassen lijkt vrijwel verzekerd van een leven lang werk. Dit is echter niet altijd het geval. Er is een groot verschil tussen de verschillende lasprocessen en de materialen die gelast moeten worden. Een lasser is meestal ervaren in één of enkele lasprocessen zoals bijvoorbeeld MIG/MAG, TIG, Elektrode of autogeen. Tussen deze lasprocessen zijn grote verschillen. Niet elk lasproces verloopt even snel, TIG lassen verloopt over het algemeen langzamer dan MIG/MAG lassen. Bij sommige lasprocessen moet men zelf handmatig het toevoegmateriaal aanbrengen zoals bij TIG en autogeen lassen en bij andere lasprocessen zoals MIG/MAG lassen wordt het las toevoegmateriaal automatisch via de lastoorts aangevoerd. Ook het gas dat bij lasprocessen wordt gebruikt. Zo kan er gebruik worden gemaakt van actieve gassen (MAG-lassen) en inerte gassen (TIG-lassen). Deze gassen hebben invloed op het lasproces en het materiaal.

De specifieke eigenschappen van lasprocessen zorgen er voor dat een bepaald lasproces wel of niet geschikt is voor een materiaalsoort, laspositie of plaatdikte. Kortom er zijn grote verschillen tussen de lasprocessen. Daar wordt hier niet verder op ingegaan. Er is voor geïnteresseerden meer informatie over lasprocessen te vinden op deze site. Gebruik hiervoor de zoekfunctie. Het is wel van belang om te weten dat de lasmethode die gebruikt moet worden om een bepaalde las te leggen bij veel bedrijven is beschreven in een lasmethodebeschrijving of een WPS (Welding Procedure Specification). Deze beschrijvingen kunnen worden opgesteld door een International Welding Technologist (IWT) of een Middelbaar Lastechnicus (MLT). Deze personen zijn bevoegd om lasprocedures te beschrijven en weer te geven in officiële documenten. Sommige bedrijven noemen deze personen bij de afkorting. Hierdoor ontstaan de functiebenamingen IWT-er en MLT-er.

Algemene informatie over lassen
Lassen is zoals in de inleiding gelezen kan worden niet een eenvoudig beroep. Een las is een verbinding die niet uitneembaar is. Dit houdt in dat een las een definitieve verbinding is die alleen uitelkaar genomen kan worden door het werkstuk te vernielen. Een las kan onder andere worden verwijdert doormiddel van slijpen met een slijptol, zagen of gutsen. Dit kost extra tijd en het werkstuk wordt er niet fraaier op. Daarom moet een lasser goed weten wat hij of zij doet. Een lasser kan verschillende lasopleidingen volgen. Het volgen van deze opleidingen garandeert niet dat de lasser daadwerkelijk ook hoogstaande kwaliteit levert. Daarvoor hebben lassers meestal specifieke lascertificaten nodig. Op een lascertificaat is aangegeven welk lasproces een lasser beheerst, welk materiaal gelast mag worden, wat voor lastoevoegmateriaal gebruikt mag worden, welke plaatdikte en positie mag worden gebruikt. In de eerder genoemde WPS of lasmethodebeschrijving is aangegeven of een certificaat vereist is of niet. Lassers die op gecertificeerd niveau lassen behoren tot de beste in hun vakgebied. Dit is echter niet voor iedereen bestemd. Sommige lassers zullen nooit op gecertificeerd niveau kunnen lassen omdat ze daar eenvoudigweg te weinig aanleg voor hebben.

De eerste stap voordat je gaat leren lassen
Het is belangrijk dat je de keuze voor het beroep lasser weloverwogen maakt. Lasser is een mooi maar ook een zwaar beroep. Werken in verschillende moeilijke posities kan aan de orde komen. Daarnaast zijn ook de lasdampen schadelijk voor de gezondheid. Een lasser kan daarnaast ook last krijgen van de vonken die van het lasproces vrij kunnen komen. Hierdoor kunnen brandwonden ontstaan als de lasser niet de geschikte brandvertragende kleding draagt. Verder dient een lasser zijn of haar ogen te beschermen tegen de schadelijke straling die vrijkomt uit de lasboog. Wanneer de lasser dit niet doet kan de lasser lasogen krijgen. Dit is zeer pijnlijk. Als deze nadelen goed onder ogen worden gezien kan men besluiten om een andere vakgebied te kiezen.

Toch zijn er veel mensen die voor het beroep lasser kiezen. Het is een vakgebied waarbij, kwaliteit, gevoel, inzicht en vakmanschap aan de orde komen. Een gedeelte van de lassen kan worden gelegd door robots. Toch is voor met name het lastige positiewerk altijd een lasser nodig die goed is in het vak. Zodra iemand besluit om het vak lasser te leren zal hij of zij goed moeten kiezen welk lasproces het beste bij hem of haar past.

Er zijn verschillende lasprocessen die voor specifieke werkstukken geschikt zijn. Een aankomend lasser moet daarom zichzelf de vraag stellen in welke omgeving hij of zij later wil lassen. Is dat bijvoorbeeld de machinebouw, staalconstructie, scheepsbouw of in de voedingsmiddelenindustrie. De producten die in deze verschillende gebieden van de werktuigbouwkunde worden gemaakt zijn zeer divers en kunnen soms niet met elkaar worden vergeleken. Daarom zal een aankomend lasser een goede keuze moeten maken. Dit kan door bij lasbedrijven langs te gaan en informatie in te winnen bij scholen waar lasopleidingen worden gegeven. Ook internet is een belangrijke informatiebron. Op internet zijn veel filmpjes te vinden waarin uitleg wordt gegeven over verschillende lasprocessen en verschillende soorten bedrijven. Pas wanneer deze informatie goed is bekeken en overwogen kan men een bepaald lasproces kiezen.

Een lasopleiding kiezen
Stel dat men uit de vorige stap de conclusie heeft getrokken dat men graag als MIG/MAG lasser aan de slag wil. Als iemand overtuigd is dat dit een lasproces is waar men  aanleg voor heeft is het verstandig om een opleidingsinstituut uit te zoeken waar een goede MIG/MAG opleiding wordt gegeven. Tussen opleidingsinstituten zitten vaak grote verschillen met betrekking tot de kwaliteit van lasopleidingen. Veel lasbedrijven weten met welk opleidingsinstituut ze goede ervaringen hebben. Deze adviezen kun je gebruiken om een verstandige keuze te maken.  

Het volgen van een lasopleiding
Zodra iemand een opleidingsinstituut heeft uitgekozen kan hij of zij  voor de zekerheid een proefles aanvragen om te kijken of bijvoorbeeld het MIG/MAG lasproces daadwerkelijk een lasproces is waar men mee verder wil. Als men na het volgen van deze proefles nog steeds overtuigd is van de keuze kan de opleiding worden aangevraagd. Meestal zal worden gestart met MIG/MAG niveau 1. Het is echter ook mogelijk dat iemand tijdens de proefles heeft laten zien dat hij of zij over zeer goede lasvaardigheden beschikt. In dat geval kan men vaak niveau 1 verkort doen en gelijk MIG/MAG niveau 2 volgen. De voorwaarden die hiervoor gelden kunnen verschillen per opleidingsinstituut. Met niveau 1 leert de cursist onder andere een werkstuk onder de hand te lassen. Dit is de meest eenvoudige laspositie. Het werkstuk ligt hierbij meestal horizontaal op de werkbank. Dit zorgt er voor dat de lasser er goed zich op heeft. Dit is belangrijk voor de controle op het smeltbad en het werkstuk. Daarnaast leert de cursist in niveau 1 de basistheorie die hoort bij het lasproces waarvoor de cursist de opleiding volgt. In de lasopleiding voor niveau 2 leert men moeilijker lasposities en krijgt de cursist ook meer theorie over lastechniek. Voor veel lasfuncties is niveau 2 het minimale vereiste waaraan een lasser moet voldoen. Veel lassers beheersen een lasproces op niveau 2 of hoger. Als een lasser zich verder wil specialiseren in lassen zal hij of zij verder moeten gaan met het behalen van niveau 3. Hierbij wordt aandacht besteed aan verschillende hoeknaden waaronder binnenhoeknaden. Het aantal posities waarin gelast wordt is nog uitgebreider. Ook de kwaliteit van de las wordt streng beoordeeld. De las wordt niet alleen visueel beoordeeld maar ook radiografisch. Hierdoor kan gekeken worden of de las niet alleen aan de buitenkant goed is maar ook aan de binnenkant geen onvolkomenheden heeft. Als de cursist niveau 3 heeft afgerond kan hij of zij verder met niveau 4. Dit is een heel hoog niveau. Lassers die een bepaald lasproces op niveau 4 beheersen kunnen in vrijwel alle posities dat lasproces uitstekend uitvoeren. Niveau 4 besteed ook aandacht aan hoe verschillende laslagen over elkaar heen gelegd kunnen worden. Daarnaast wordt de kwaliteit van de las nog strenger beoordeeld. Met niveau 4 van een bepaald lasproces kan een lasser in de praktijk zich op papier goed onderscheiden van andere lassers die een lager niveau op de opleiding hebben behaald. Er zijn maar weinig lassers die uiteindelijk niveau 4 halen van een bepaald lastproces.

Niveau 4 is het hoogste niveau dat op een lasopleiding kan worden gehaald. Toch mogen lassers met niveau 4 in de praktijk niet alles lassen. Er zijn werkstukken, schepen, constructies en machines waarvoor een lascertificaat vereist is. Dit is een specifiek certificaat waarmee aangetoond kan worden dat iemand een bepaalde las uitstekend kan leggen. Hierbij wordt ook aangegeven onder welke positie de las door de lasser gelegd kan worden en welk toevoegmateriaal daarvoor gebruikt mag worden. Ook de plaatdikte en de materiaalsoort wordt aangegeven. Een lascertificaat heeft een bepaalde dekking. Deze dekking is nodig om aan de eisen te voldoen die in een WPS of lasmethodebeschrijving zijn vermeld. Één van de moeilijkste lasposities is het lassen van een pijp onder een hoek van 45 graden. Dit wordt ook wel HL 45 of positie G6 genoemd. Lassers die dit certificaat halen behoren tot de beste lassers die op de arbeidsmarkt actief zijn. Voordat een lasser dit niveau haalt is hij of zij over het algemeen al een aantal jaren actief als lasser.

Ervaring in de praktijk is belangrijk bij lassen
De lasopleiding is natuurlijk een goed begin. Toch kan men met een lasopleiding nog niet zeggen dat men daadwerkelijk een ervaren lasser is. Ervaring is voor lassers van groot belang. Deze ervaring leert de lasser in de praktijk. Dit kan onder andere door bij verschillende bedrijven te werken aan verschillende producten. Veel lassers werken als uitzendkracht aan het begin van hun loopbaan. Hierdoor kunnen ze bij diverse bedrijven ervaren hoe het is om aan bepaalde producten en materialen te lassen. Lassers die thuis zelf een lastoestel hebben kunnen hun vaardigheid zeer goed op pijl houden al is er meestal niemand die hun laskwaliteit kan beoordelen wanneer ze werkstukken thuis hebben gemaakt.

De ideale combinatie is dat men met een basislasopleiding eerst in de praktijk aan de slag gaat. Daar kan de lasser het beste zo jong mogelijk mee beginnen. Wanneer de lasser wat ouder is zal de lasser over meer ervaring moeten beschikken. Daarom moet de oudere lasser over meer papieren beschikken. Deze kan hij of zij door de ervaring in de praktijk over het algemeen zonder veel moeite halen. Toch zal de lasser er niet aan ontkomen dat ook bij lasopleidingen theorie aan de orde komt. Dit moet elke lasser behalen.

Een leven lang lassen kunnen maar weinig lassers. Het is net als bij stratenmakers een zwaar beroep dat voor een behoorlijke fysieke belasting zorgt. Daarom groeien veel lassers op de duur liever door naar een lastechnische functie zoals middelbaar lastechnicus of lasbaas. Ook de positie van voorman of lasinstructeur is voor veel ervaren lassers interessant. Het is echter wel jammer dat veel bedrijven maar weinig mensen op deze positie nodig hebben. Dit is wel van belang om goed te weten.

Wat zijn de voordelen en nadelen van het beroep lasser in de werktuigbouwkunde?

Voordat iemand besluit om lasser te worden is het belangrijk om een goed beeld te hebben van het beroep lasser. Dit is zeker een interessant beroep. Er komt veel vakwerk, gevoel en inzicht in dit vakgebied aan de orde. Toch kleven er ook nadelen aan het beroep lasser. Het is een zwaar beroep waarbij men ook regelmatig in moeilijke posities moet werken. Deze posities zijn niet altijd even ergonomisch verantwoord. Zo kan een lasser gedurende lange tijd voorovergebogen een las leggen. Ook lasposities waarbij men op de knieën moet werken komen aan de orde. Boven het hoofd lassen is ook een lastige positie waarbij de vonken, die bij het lasproces vrijkomen, ook nog op de lasser zelf kunnen neerdalen. Een lasser kan door deze vonken ook brandwonden krijgen. Daarom moet een lasser zichzelf goed beschermen met brandvertragende kleding. Ook lasogen is een risico waarmee lassers te maken kunnen krijgen. Lasogen ontstaan wanneer men in de vlamboog kijkt zonder dat men de ogen voldoende tegen de schadelijke straling beschermd. Lasogen worden als zeer pijnlijk beschouwd en het duurt een dag of twee voordat men daarvan geheel is hersteld.

De las als handtekening
Bovenstaande risico’s schrikken de mensen die een passie hebben voor lassen echter niet af. Lassers die een passie hebben voor lassen willen niets anders dan een zo mooi mogelijke las leggen en zo weinig mogelijk de las nabewerken. Ze beschouwen hun las als een handtekening en die moet netjes zijn. Het slijpen van een las wordt door de meeste lassers beschouwd als een teken dat de las niet netjes gelegd is. Er kunnen echter ook andere redenen zijn om een las te slijpen.

Lassen is niet eenvoudig
Hoewel lassen uitvoerend werk is kan lassen niet als eenvoudig werk worden beschouwd. Een lasser moet met veel verschillende factoren rekening houden tijdens het lasproces. Zo moet een lasser het lastoestel goed kunnen instellen. Dit instelling van het lastoestel heeft te maken met de snelheid waarmee gelast kan worden. Daarnaast moet de lasser ook rekening houden met de warmte inbreng. Teveel warmte inbreng kan er voor zorgen dat het werkstuk vervormd. In sommige gevallen zal men de platen die men aan elkaar last van te voren op een bepaalde temperatuur moeten brengen. Dit wordt door sommige lassers ook wel voorstoken genoemd. Wanneer dit niet gebeurd is het temperatuurverschil tussen de plaats waar de las wordt aangebracht en de rest van de plaat te groot. Hierdoor kunnen door krimp en rek scheuren ontstaan in het werkstuk. In een Welding Procedure Specification WPS of lasmethodebeschrijving is aangegeven in welke mater er voorgestookt moet worden en op welke temperatuur. Deze documenten kunnen onder andere worden opgesteld door een middelbaar lastechnicus of een IWT, International Welding Technologist. De lasser zal de lasmethodebeschrijving of WPS regelmatig moeten lezen en de  temperatuur van het werkstuk goed moeten meten. Ook zal er rekening gehouden moeten worden met het afkoelen van bepaalde werkstukken. Hiervoor kunnen speciale warmhouddekens worden gebruikt.

Afstemmen van factoren in lasproces
Een lasser die op hoog niveau last moet goed in staat zijn om met alle factoren goed op elkaar af te stemmen en het lasproces perfect uit te voeren. Hieraan zijn meestal specifieke lascertificaten verbonden. Een lasser is verplicht om deze certificaten te halen wanneer hij aan hoogwaardige werkstukken werkt die gekeurd worden. Omdat er verschillende lasprocedures, metalen, plaatdiktes, lasposities en toevoegmaterialen worden gebruikt zijn er verschillende lascertificaten. Daarnaast zijn er ook nog verschillende benamingen zoals de Europese Norm en de Amerikaanse norm die met AWS wordt aangeduid. Een lasser die op gecertificeerd niveau last zal goed bij moeten houden hoe lang zijn lascertificaat geldig is en welke posities daarmee gelast mogen worden.

Gecertificeerd lassen
Gecertificeerde lassen worden meestal gekeurd. Dit kan gebeuren via een niet destructief onderzoek (NDO) of een destructief onderzoek. Een NDO onderzoek wordt uitgevoerd door een NDO-er die daarvoor geleerd heeft. Het NDO kan onder andere visueel plaatsvinden, via een röntgen onderzoek aan de hand van foto’s of met bijvoorbeeld geluidsgolven. Een destructief onderzoek kan bijvoorbeeld worden gedaan door de las door te zagen of door een trekproef uit te voeren. Deze testen maken inzichtelijk of de lasser op het niveau last dat in het certificaat is aangegeven. Gecertificeerd lassen is niet voor iedereen weggelegd. Er zijn veel lassers die wel op gecertificeerd niveau willen lassen maar dat in de praktijk niet kunnen. Voor het lassen op gecertificeerd niveau is veel vaardigheid en inzicht vereist. Daarnaast komt er ook veel gevoel voor het lasproces bij kijken. Dat hebben niet alle lassers. De meeste lassers beginnen echter op een laag niveau.

Wat is inert of inertie en welke eigenschappen hebben chemisch inerte materialen en gassen?

Inert is een woord dat kan worden vertaald met traag of niet actief. Het wordt in de techniek wel gebruikt om objecten en materialen mee aan te duiden die niet onderhevig zijn aan factoren van buitenaf. Wanneer men spreekt over de inertie van een bepaald materiaal heeft men het over de weerstand die een materiaal biedt tegen alle invloeden die de toestand van het materiaal proberen te veranderen van stilstand naar beweging. In het Engels wordt het woord inert ook wel gebruikt voor objecten en mensen die letterlijk en figuurlijk niet in beweging te krijgen zijn, niet uit zichzelf en niet door kracht van buitenaf. Een veel gebruikt synoniem voor inert is het woord inactief. Door de vertaling lijkt inertie een negatieve eigenschap te zijn van materialen. Dit is echter niet altijd het geval. Inertie kan zeer gewenst zijn. Vooral wanneer het chemische inertie betreft. Hierover is hieronder meer informatie weergegeven.

Wat is chemische inertie?
Chemische stoffen kunnen inert zijn. Dit houdt in dat chemische stoffen niet of nauwelijks reageren op de inwerking van andere chemische stoffen. Een chemisch inert materiaal bied weerstand tegen de uitwerking van andere chemicaliën. Edelmetalen kunnen inert zijn. Daarnaast zijn er ook edelgassen.

Inerte gassen
Voorbeelden van inerte gassen zijn helium,  argon en stikstofgas. Inerte gassen worden ook wel edelgassen genoemd. Deze gassen reageren onder normale omstandigheden niet of bijna niet met chemicaliën. Door deze eigenschap worden inerte gassen gebruikt om stoffen af te dekken zodat deze niet kunnen reageren met vocht en zuurstof uit de omringende omgeving. Door het toepassen van inerte gassen als beschermingsgassen kan een inerte atmosfeer worden gerealiseerd. Inerte gassen kunnen in de metaaltechniek onder andere worden gebruikt voor lasprocessen. Een voorbeeld hiervan is het TIG lasproces. Dit wordt letterlijk vertaald door Tungsten Inert Gas. Met deze Engelse omschrijving wordt duidelijk dat bij dit lasproces gebruik wordt gemaakt van inert gas. Meestal wordt bij TIG lassen het inerte gas argon gebruikt. Door inert gas te gebruiken tijden het lassen wordt het materiaal dat gelast wordt niet aangetast door chemicaliën. Er ontstaat een beschermende atmosfeer. Argon fungeert tijdens TIG lassen als een beschermingsgas.

Inerte metalen
Inerte metalen worden ook wel edelmetalen genoemd. Edelmetalen reageren net als inerte gassen niet op de uitwerking van andere stoffen. Hierdoor blijven de edelmetalen constant hun waarde en hun massa behouden. Edelmetalen ‘roesten’ niet, dit houd in dat ze niet aan corrosie onderhevig zijn. Dit zorgt er voor dat edelmetalen ook in een omgeving waarbij veel vocht en CO2 aanwezig is, nauwelijks aangetast worden. De bekendst en meest hoogwaardige edelmetalen zijn goud en platina. Daarnaast is ook zilver een hoogwaardig edelmetaal. Zilver reageert echter wel meer op de uitwerking van chemicaliën dan goud en platina. Edelmetalen vallen onder de metaalgroep non-ferro. Niet elk metaal in de non-ferro metaalgroep is een hoogwaardig edelmetaal. Onder non-ferro vallen ook metalen als aluminium, zink, tin en koper. Deze metalen vormen wel oxide wanneer ze in contact komen met vocht en CO2. Deze oxide kan echter ook als beschermlaag dienen tegen het onderliggende metaal.

Ferrometalen
Metalen en legeringen waarbij ferro (ijzer) als hoofdbestandsdeel wordt toegepast vallen onder de ferrometalen. Deze ferrometalen zijn ook onderhevig aan corrosie wanneer ze niet goed worden afgeschermd tegen chemicaliën zoals CO2 en chloriden. Ferrometalen zijn niet per definitie minder edel dan non-ferrometalen. Zink is een voorbeeld van een non-ferrometaal dan minder edel is dan ijzer. Metalen die reageren op de uitwerking van chemicaliën worden ook wel ‘actief’ genoemd. Bij gassen die reageren met chemicaliën wordt gesproken over actieve gassen.

Wat is autogeen lassen en waar wordt autogeen lassen toegepast?

Autogeen lassen is een lasproces waarbij gelast wordt met een zeer hete vlam. Voor het creëren van deze hete vlam wordt meestal gebruik gemaakt van acetyleen in combinatie met zuivere zuurstof. Door deze combinatie wordt autogeen lassen ook wel zuurstof-acetyleenlassen of gassmeltlassen genoemd. Er wordt gebruik gemaakt van een speciale brander. De brander wordt bij het autogeen lassen met één hand vast gehouden. Met  de andere hand wordt vulmiddel aangebracht.

Het is erg belangrijk dat de lasvlam goed wordt afgeregeld. Wanneer er teveel zuurstof wordt toegevoegd kan het werkstuk worden beschadigd. Daarnaast kan een overschot aan acetyleen niet tijdig worden verband en geeft daardoor nauwelijks hitte. De vlam kan tijdens autogeen lassen op drie verschillende manieren worden geregeld. Dit heeft te maken met de toevoeging van acetyleen en zuurstof.

Neutrale lasvlam
Er kan gelast worden met een neutrale lasvlam. In deze vlam wordt alle toegevoegde zuurstof gebonden aan acetyleen. Hierdoor blijft er in de lasvlam geen zuurstof over zodat het werkstuk niet kan worden verbrand. Een neutrale lasvlam heeft geen pluim maar een zo groot mogelijke kegel. Aan het uiteinde van de kegel zit een afgeronde punt.

Carburerende lasvlam
Een andere soort lasvlam is de carburerende lasvlam. Deze vlam bevat teveel acetyleen ten opzichte van de toegevoegde zuurtstof. De lasvlam heeft hierdoor een lange gele pluim in plaats van een scherpe kegel.

Oxiderende lasvlam
Naast de hiervoor genoemde lasvlammen kan ook een oxiderende lasvlam ontstaan bij autogeen lassen. Deze lasvlam ontstaat wanneer er weinig acetyleen is toegevoegd. Dit zorgt voor een vlam in de vorm van een kleine kegel. De kegel bevat een scherpe punt. Er is in de vlam teveel zuurstof aanwezig ten opzichte van acetyleen. Door het overschot aan zuurstof wordt het smeltbad gedurende het lasproces beschadigd. Gedeeltes van het smeltbad worden door de lasvlam verbrand.

Stekende en slepende lasmethode
Bij autogeen lassen kan gebruik worden gemaakt van twee verschillende lastechnieken. De eerste techniek is de stekende lasmethode. Deze methode wordt gebruikt bij wanddiktes tot maximaal 4 millimeter. Stekend lassen wordt ook wel duwend lassen genoemd. Hierbij wordt de lasbrander naar voren gebracht terwijl het lastoevoegmateriaal  door de lasvlam heen in het smeltbad wordt aangebracht.

De andere lasmethode die bij autogeen lassen wordt toegepast is de slepende lasmethode. Deze methode wordt ook wel trekkend lassen genoemd en wordt toegepast bij materialen met een wanddikte van 6 millimeter of meer. Hierbij wordt de lasvlam tegen het smeltbad in gehouden. De lasvlam brand hierbij tegen het smeltbad aan en de toorts wordt steeds verder naar achteren getrokken. Het lastoevoegmateriaal wordt met draaiende bewegingen in het smeltbad aangebracht. Door het wegtrekken van de lastoorts stolt het smeltbad en ontstaat de lasverbinding.

Waar wordt autogeen lassen toegepast?
Autogeen lassen wordt tegenwoordig voornamelijk toegepast bij dikwandig installatiewerk. Hierbij wordt autogeen lassen gebruikt voor het aan elkaar lassen van onderdelen van dikwandige installaties ten behoeve van centrale verwarming. Deze dikwandige installaties worden vaak aangelegd in grote utiliteit en industriële gebouwen. De leidingen die daar aan elkaar gelast worden zijn dikwandig. Dit houdt in dat wanddikte van leidingen dikker is dan 3 millimeter. Het autogeen lasproces wordt gebruikt voor het aan elkaar lassen van deze leidingen.  Tegenwoordig wordt autogeen lassen ook wel vervangen door TIG lassen. Autogeen kan ook worden gebruikt om leidingen en buizen te snijden.  Hierbij wordt gebruik gemaakt van een oxiderende lasvlam. Dit wordt ook wel snijbranden genoemd.