Indeling soorten elektrische spanning

Elektrische spanning wordt uitgedrukt in de grootheid Volt (V). Wanneer elektrisch geladen deeltjes ongelijk over twee polen verdeeld zijn en willen bewegen, is er sprake van spanning. Er zijn vier verschillende soorten spanning. Deze verschillende soorten spanning zijn ingedeeld in het aantal Volt. Door deze indeling en benaming wordt inzichtelijk met wat voor type elektrische installatie een elektromonteur werkt.

  • Zeer lage spanning
    Dit zijn elektrische spanningen van 12V tot 24V.
  • Laagspanning
    De categorie laagspanning wordt opgedeeld in twee groepen:
    –             Wisselspanning tot 1000V en
    –             Gelijkspanning tot 1500V.
  • Middenspanning
    Dit zijn elektrische spanningen van 1.000V tot 50.000V.
  • Hoogspanning
    Hieronder vallen elektrische spanningen van 50.000V tot meer dan 380.000V.

Verschil tussen gelijkspanning en wisselspanning
Elektrische spanning wordt ook wel ingedeeld in wisselspanning en gelijkspanning. We leggen het verschil tussen deze twee begrippen kort uit. Bij wisselspanning wisselt de richting van elektronen vandaar de benaming wisselspanning. Als iemand een elektrische schok krijgt van een elektrische installatie met wisselspanning dan veroorzaakt dat een forse stoot, maar de persoon blijft niet vastzitten aan het gedeelte van de elektrische installatie die onder spanning staat.

In een elektrische installatie met gelijkspanning stromen de elektronen steeds in dezelfde richting. Als men een stroomschok krijgt van gelijkspanning dan veroorzaakt dat spierkramp. De persoon blijft na de schok vaak verkrampt vastzitten aan de elektrische installatie. Gelijkspanning veroorzaakt bij kortsluiting grotere vlambogen dan wisselspanning. Als men het heeft over veilig werken met elektriciteit moet men de verschillen in risico’s tussen gelijkspanning en wisselspanning goed weten.

Veilige spanning
Werken met veilige spanning is ook mogelijk in de elektrotechniek. Men heeft het over veilige spanning omdat er bij een bepaalde spanning geen gevaar is voor de veiligheid en gezondheid van de werknemer. Veilige spanning is:

  • Wisselspanning met maximaal 50 V(olt)
  • Gelijkspanning met maximaal 120 V(olt)

In vochtige, nauwe ruimten is men verplicht om veilige spanning toe te passen in elektrische installaties. Daarnaast wordt in speciale instellingen zoals in zwembaden en ziekenhuizen gewerkt met een zeer lage spanning: 12 V(olt).

Werken aan elektrische installaties
Het werk van een elektromonteur brengt gevaren met zich mee. Het bekendste gevaar is een elektrische schok die in een alinea hierboven al even is benoemd. Om te voorkomen dat men een elektrische schok krijgt zal men de spanning van een elektrische installatie moeten uitschakelen. Het werk aan elektrische installaties is overigens het werk van specialisten alleen bevoegde elektromonteurs die een gedegen opleiding hebben gehad mogen aan een elektrische installatie werken. In de NEN 3140 wordt een indeling gegeven op basis van de bevoegdheid van elektromonteurs. Daarbij wordt onderscheid gemaakt tussen een:

  • Voldoende Onderricht Persoon (VOP) die onder toezicht van een VP nauwkeurig omschreven werkzaamheden mag uitvoeren aan elektrische installaties.
  • Vakbekwaam persoon (VP) mag zelfstandig aan elektrische installaties werken.
  • Installatieverantwoordelijke (IV)
  • Werkverantwoordelijke (WV).

De hierboven genoemde personen mogen in meer en mindere mate zelfstandig aan elektrische installaties werken. Daarvoor krijgen deze personen een schriftelijke aanwijzing van hun leidinggevenden. Personen die geen of onvoldoende elektrotechnische kennis hebben worden ook wel een ‘leek’ genoemd. Een leek mag niet of nauwelijks aan elektrische installaties werken. Een Leek geen aanwijzing en is iemand anders dan een Vakbekwaam Persoon of Voldoende Onderricht Persoon. Een leek kan bijvoorbeeld elektrische bedrading verwijderen bij de sloop van een gebouw. Uiteraard dient deze bedrading dan niet onder spanning te staan.

Veilig werken met een vorkheftruck

Een vorkheftruck is een combinatie van een hefmiddel en transportmiddel en wordt voortbewogen doormiddel van een elektromotor of een verbrandingsmotor. Vorkheftrucks worden in veel logistieke bedrijven gebruikt maar ook in andere bedrijven die magazijnen bevatten. Een vorkheftruck bevat twee lange lepels die uitermate geschikt zijn voor het vervoeren van goederen die op pallets staan. Deze twee lepels zorgen voor een gevorkte vorm waar de vorkheftruck haar naam aan dankt. In magazijnen worden vaak elektrisch aangedreven vorkheftrucks gebruikt. Buiten gebruikt men vaak grotere vorkheftrucks die voorzien zijn van een verbrandingsmotor en lasten kunnen tillen tot een gewicht van tien ton.

Gevaren bij het werken met vorkheftrucks
Heftrucks worden veel gebruikt maar dat zorgt er niet voor dat het eenvoudig is om deze transportvoertuigen te besturen. In een magazijn kunnen allemaal risicovolle factoren aanwezig zijn waardoor het werken met een vorkheftruck gevaren met zich meebrengt. In een Risico Inventarisatie en Evaluatie zal een bedrijf de risico’s van het bedrijf moeten benoemen en daarbij moeten aangeven hoe de risico’s bestreden kunnen worden in een plan van aanpak. In de Risico Inventarisatie en Evaluatie zal een bedrijf ook de risico’s moeten beschrijven omtrent de interne transportmiddelen zoals heftrucks. We noemen een aantal veelvoorkomende gevaren en ongelukken die te maken hebben met het verkeerd gebruiken van vorkheftrucks:

  • Kantelen van het voertuig.
  • Vallen of kantelen van de lading.
  • Aanrijden van personen en constructies.
  • Schade aan heftruck en goederen door roekeloos gebruik.
  • Inademen van uitlaatgassen van de dieselmotor bij het werken in een afgesloten ruimte.

Een belangrijk deel van de risico’s kan worden voorkomen door het in acht nemen van veiligheidsaspecten zoals voldoende kennis over het veilig werken met heftrucks en de technische specificaties van de heftruck. Deze twee onderwerpen zijn in de volgende alinea’s beschreven.

Heftruck certificaat
Er zijn een aantal algemene veiligheidsrichtlijnen voor het werken met een vorkheftruck. De bestuurder moet bijvoorbeeld minimaal 18 jaar zijn.
Vanaf 16 jaar mag iemand wel op een heftruck rijden als jde persoon daarvoor deskundig is opgeleid en onder toezicht staat van een verantwoordelijke persoon zoals een leidinggevende.

Het is belangrijk dat de bestuurder van de heftruck voldoende ervaring heeft en op de hoogte is van de bediening van de heftruck. Doormiddel van het behalen van een heftruckcertificaat of certificaat veilig werken met een vorkheftruck kan een (aankomend) bestuurder van een heftruck de belangrijkste (veiligheids-) richtlijnen en instructies leren die nodig zijn voor het dagelijks werken met vorkheftrucks. Een heftruckcertificaat zou men kunnen beschouwen als een soort rijbewijs voor heftrucks. Veel bedrijven stellen een heftruckcertificaat verplicht als een werknemer tijdens de werkzaamheden gebruik moet maken van een heftruck.

Een cursus voor een heftruckcertificaat wordt door een erkend opleidingsinstituut gehouden. Deelnemers moeten de heftruckcursus afronden met een examen. Bij het succesvol afronden van het examen ontvangt de deelnemer het heftruckcertificaat. Met het heftruckcertificaat kan de heftruckchauffeur aantonen dat hij of zij over de basisvaardigheden beschikt om veilig een heftruck te kunnen besturen. Uiteraard dient de heftruckchauffeur hetgeen hij of zij geleerd heeft in de heftruckcursus ook toe te passen in de praktijk. Alleen een heftruckcertificaat biedt geen garantie voor veilig werken de houding, motivatie en concentratie van de heftruckchauffeur is zeer belangrijk voor de veiligheid op de werkvloer.

Werklastdiagram vorkheftruck
Ook zal de bestuurder op de hoogte moeten zijn van de technische specificaties van de heftruck en moeten weten wat de maximale last is die een heftruck kan heffen en verplaatsen. Veel informatie kan de heftruckchauffeur vinden op de typeplaat van de heftruck en de werklastdiagram. De werklastdiagram maakt voor de heftruckchauffeur inzichtelijk of een bepaalde last veilig en verantwoord door de heftruck kan worden opgetild en vervoerd. Op de werklastdiagram staat naast het maximale hefvermogen ook de maximale hefhoogte aangegeven. Daarnaast geeft de werklastdiagram informatie over de stabiliteit van de vorkheftruck.

Veiligheidsrichtlijnen voor werken met een vorkheftruck
Hiervoor zijn een aantal belangrijke aspecten benoemd met betrekking tot het veilig werken met een vorkheftruck. Er zijn echter ook nog een heleboel regels als het gaat om veilig werken met vorkheftrucks. We noemen een aantal belangrijke:

  1. Iedere dag moet voor de start van de werkzaamheden met de heftruck zal de heftruck aan de hand van een checklist moeten worden gecontroleerd. Als de heftruck in technisch goede staat is en veilig is kan men deze gebruiken.
  2. Heftrucks moeten voorzien zijn van een claxon voor het geven van een waarschuwingsgeluid. Ook dient de heftruck voorzien te zijn van een uitneembare sleutel zodat niet iedereen de heftruck kan gebruiken. De plaats van de bestuurder dient beschermd te zijn door een stevige kooi en daarnaast moet de bestuurder gebruik maken van een veiligheidsgordel.
  3. Zorg dat je de veiligheidsregels opvolgt. Kijk ook naar de waarschuwingsborden en afgezette zones. Rijd langzaam met de heftruck door paden waarop personeel zich te voet verplaatst.
  4. Een heftruck is bestemd voor 1 persoon en meerijden van andere personen is niet toegestaan tenzij er een extra stoel is aangebracht op de heftruck.
  5. Met de heftruck mag men niet hijsen tenzij er een speciale hijsvoorziening is gemonteerd op de heftruck.
  6. Er mogen geen personen worden opgehesen met de heftruck. Het staan op de lepels van een heftruck is verboden. Ook wanneer personen op een pallet gaan zitten mogen ze beslist niet met een heftruck worden verplaatst. Het naar boven hijsen van personen mag alleen met een goedgekeurde werkbak.
  7. Een heftruck moet onbelast geparkeerd worden. De moet op de vloer liggen en de mast van de heftruck moet iets voorover hellen.
  8. Zorg er voor dat de opgetilde lasten niet op mensen kunnen vallen. Daarom moet de last niet boven mensen worden getild en getransporteerd.
  9. Snel optrekken en abrupt remmen moet worden vermeden.
  10. Rijd zoveel mogelijk in rechte lijnen en verander niet plotseling van richting met of zonder lading.
  11. In het geval een heling moet worden opgereden met een heftruck dan moet deze heling altijd opwaarts vooruit gereden worden. Bij het naar beneden rijden van een helling moet men achteruit rijden. Dan bevind de last zich dus aan de achterzijde van de heftruck om kantelen van de last te voorkomen.
  12. Het is verboden mobiel te bellen, sms-en en te app-en terwijl men rijd met de heftruck.
  13. Zorg dat je voldoende zicht hebt tijdens het heftruckrijden. Als de last het zicht belemmerd moet men niet vooruit rijden maar juist achteruit om voldoende zicht te blijven houden.
  14. Als een last bestaat uit opgestapelde objecten of materialen dan moeten deze in een stevig verband zijn opgestapeld.
  15. Het contragewicht aan de achterkant van de heftruck mag niet verzwaard worden.

Wat is een bedrijfsnoodplan?

Een bedrijfsnoodplan wordt ook wel een calamiteitenplan genoemd en is een beschrijving van de maatregelen en voorzieningen die een bedrijf heeft getroffen om zich voor te breiden op calamiteiten en noodsituaties. Doormiddel van een bedrijfsnoodplan wordt inzichtelijk gemaakt hoe een bedrijf zal omgaan met noodsituaties. In dit plan worden de afspraken, procedures en organisatiestructuren weergegeven die van belang zijn wanneer er sprake is van een noodsituatie. Het bedrijfsnoodplan maakt inzichtelijk wie welke taken, verantwoordelijkheden en bevoegdheden heeft en maakt duidelijk hoe de afstemming met is met hulpdiensten en andere organisaties.

Is een bedrijfsnoodplan verplicht?
Het antwoord op bovenstaande vraag is ‘ja’. Elk bedrijf is in Nederland verplicht om een bedrijfsnoodplan te hebben. Dit is vastgelegd in Artikel 15 van de Arbeidsomstandighedenwet. Het doel van bedrijfsnoodplan is om de gevolgen van een noodgeval of calamiteit te bestrijden of te verminderen. Leidinggevenden in een organisatie zullen de inhoud van het bedrijfsnoodplan moeten kennen en moeten weten wat hun verantwoordelijkheden en verplichtingen zijn voor het geval er zich een noodsituatie voordoet.

Ook uitvoerende of operationele medewerkers moeten een bedrijfsnoodplan ontvangen voordat ze een bedrijfsterrein gaan betreden. Deze verplichting is ook van toepassing op tijdelijke krachten zoals uitzendkrachten en gedetacheerd personeel. Door deze verplichte verstrekking van het bedrijfsnoodplan zal elke persoon die een bepaald werkterrein of gebouw betreedt op de hoogte zijn van de acties die moeten worden ondernomen als er een calamiteit of noodsituatie is ontstaan. Het is echter niet overzichtelijk en effectief om iedere werknemer en leidinggevende een dik boek met allemaal regels en verplichtingen te verstrekken.

In plaats daarvan maken bedrijven gebruik van overzichtelijke folders en kleine boekjes waarin met behulp van foto’s is aangegeven welke zaken van belang zijn als er noodsituaties zijn ontstaan. Naast deze overzichtelijke documenten worden vaak borden gebruikt met daarop duidelijke richtlijnen en aanwijzingen waar men heen moet gaan als er een calamiteit heeft plaatsgevonden en waar men dan rekening mee moet houden.

Onderdelen bedrijfsnoodplan
Een bedrijfsnoodplan bestaat uit een aantal onderdelen. De inhoud van een bedrijfsnoodplan kan verschillen tussen organisaties en zal in grote mate worden beïnvloed door de aard van de risico’s en de omvang van het gebouw of werkterrein. Het plan moet in ieder geval de volgende onderdelen bevatten:

Doelstellingen
In dit deel zijn het type noodgevallen en calamiteiten beschreven waar het bedrijfsnoodplan op is gericht. Daarbij wordt een omschrijving gegeven en zijn de scenario’s benoemd en de mogelijke omvang en effecten. Ook de aanwezigheid van schadelijke en gevaarlijke stoffen wordt hierbij benoemd. Ook is aangegeven waar de relevante informatie gevonden kan worden. De doelstellingen dienen zo geformuleerd te zijn dat het bedrijfsnoodplan in de praktijk toepasbaar is, ook tijdens oefeningen.

Organisatiestructuur
In het bedrijfsnoodplan moet een duidelijke structuur worden benoemd waarmee inzichtelijk wordt gemaakt welke rol het personeel heeft dat binnen het bedrijf werkzaam is. Ook de verantwoordelijkheden dienen duidelijk te worden benoemd evenals de bevoegdheden van bepaalde personen zoals bedrijfshulpverleners (BHV-ers) en leidinggevenden. Verder dient duidelijk inzichtelijk te worden gemaakt hoe de afstemming plaatsvind met de gemeentelijke rampenbestrijdingsorganisatie.

Communicatie
Een bedrijfsnoodplan gaat voor een groot deel om communicatie, elk personeelslid, leidinggevende en specialist moet weten wat er van hem of haar wordt verwacht. In een communicatieplan wordt dit duidelijk. Het communicatieplan maakt de procedures inzichtelijk over hoe ambulancepersoneel, brandweer, overheidsdiensten, politie en andere relevante instanties opgevangen moeten worden door de organisatie wanneer de melding is gedaan. Kortom wie houdt op welke manier contact met deze verschillende partijen nadat ze op de werklocaties aanwezig zijn om bijstand te verlenen.

Instructieplan
In het instructieplan wordt duidelijk gemaakt wanneer de werknemers geïnstrueerd worden omtrent het calamiteitenplan. De werknemers dienen namelijk voor het betreden van het werkterrein of gebouw op de hoogte zijn van het bedrijfsnoodplan. Het moment van de instructie en de manier waarop de instructie omtrent het bedrijfsnoodplan plaatsvind is vastgelegd in het instructieplan.

Procedures
Een aantal specifieke procedures die moeten opgevolgd worden in het geval van een calamiteit moeten duidelijk zijn omschreven. Dit gaat om de waarschuwings- en alarmeringsprocedures. Dit deel van het bedrijfsnoodplan bevat informatie over:

  • Welke persoon, op welke manier en door welke verantwoordelijk intern gealarmeerd zal moeten worden.
  • Hoe intern gespecialiseerd personeel moet worden opgeroepen en door wie dat gedaan kan worden.
  • Welke perspoon of personen geautoriseerd om hulpdiensten te alarmeren. De alarmnummers moeten makkelijk vindbaar zijn.
  • Op welke plaats of plaatsen het personeel zich dient te verzamelen. Deze verzamelplekken dienen bij iedereen bekend te zijn.

Tekeningen
Een bedrijfsnoodplan bevat ook tekeningen. Dit kunnen tekeningen zijn van een werkterrein maar ook van een gebouw. In het laatste geval zal van elke laag van een gebouw in een tekening moeten worden aangegeven wat de vluchtwegen zijn, waar de blusmiddelen zijn geplaatst en waar de brandmelders zijn aangebracht.

Medische verzorging
Binnen het bedrijfsnoodplan dient ook aandacht te worden besteed aan hoe gewond personeel kan worden geholpen. Voor slachtoffers dienen ook veilige verzamelplaatsen aanwezig te zijn. De medische noodcentra en faciliteiten moeten bekend zijn.

Wat is SSVV of Stichting Samenwerken voor Veiligheid?

SSVV is een afkorting die staat voor Stichting Samenwerken voor Veiligheid en is een onafhankelijke organisatie die onder andere het VCA-systeem beheert. Binnen deze onafhankelijk stichting zijn alle partijen vertegenwoordigd die bij het VCA-systeem zijn betrokken. Dit zijn onder andere petrochemische bedrijven. Doormiddel van kennis en opleiding wil deze stichting de veiligheid op de werkvloer bevorderen. Veel ongelukken kunnen namelijk worden voorkomen door de veiligheidsrichtlijnen te kennen en daarnaar te handelen. Voor dit doeleinde heeft de SSVV een speciale opleidingsgids ontwikkeld, daarover kun je in de volgende alinea’s meer lezen.

SSVV Opleidingen Gids
Vanuit de SSVV wordt een zogenaamde SSVV Opleidingengids aangeboden. Deze opleidingsgids bevat zogenaamde SOG opleidingen waarbij de letters SOG staan voor SSVV Opleidingen Gids. De SSVV opleidingsgids is bedoelt om informatie te verstrekken aan opdrachtgevers en opdrachtnemers over risicovolle werkzaamheden, risicovolle arbeidsomstandigheden en werkomgevingen waar risico’s zich kunnen voordoen. Onder opdrachtgevers en opdrachtnemers vallen aannemers, onderaannemers, uitzendbureaus en detacheringsbureaus.

Daarnaast biedt de SSVV opleidingengids informatie aan gecertificeerde instellingen met betrekking tot de eisen waaraan de toetsing dient te voldoen. De SSVV opleidingengids maakt daarnaast duidelijk voor welke werkzaamheden en activiteiten in de petrochemische sector aanvullende opleidingen en examinering verplicht is. De examens zullen moeten worden afgelegd bij een SOG-examencentrum dit is een opleidingscentrum dat door de SSVV is erkend.

Verschillende VCA / VCU certificaten voor bedrijven en werknemers

VCA-certificering is bedoeld voor bedrijven die actief zijn in verschillende sector waar risicovolle werkzaamheden op de werkvloer worden verricht. Naast de werkzaamheden kunnen ook de werkomgeving en de arbeidsomstandigheden risico’s met zich meebrengen. Men kan hierbij denken aan bedrijven die actief zijn in de petrochemische sector, de industrie, bouw en elektrotechniek. In al deze sectoren worden verschillende werkzaamheden uitgevoerd. Het VCA is een algemeen veiligheidscertificaat dat voor meerdere sectoren wordt gebruikt. VCA is een afkorting die staat voor VGM Checklist Aannemers. Hierbij staat de afkorting VGM voor staat voor Veiligheid, Gezondheid en Milieu. Deze drie aspecten krijgen aandacht als men een VCA certificaat wil behalen.

Verschillende VCA certificaten
Er zijn echter verschillende soorten VCA certificaten. Het soort VCA certificaat heeft te maken met de verantwoordelijkheid van de werknemer of leidinggevende op de werkplek. Zo is er voor leidinggevenden een VCA VOL. De afkorting VOL staat voor Veiligheid Operationeel Leidinggevende. 

Voor uitvoerende krachten is er een basis VCA of diploma basisveiligheid VCA. Ook voor uitzendondernemingen er een speciale VCA certificering genaamd VCU, omdat uitzendondernemingen als intermediair functioneren en geen direct toezicht hebben op de werkzaamheden van het uitzendpersoneel. Uitzendkrachten die werkzaam zijn voor uitzendbureaus dienen echter wel in het bezit te zijn van een VCA als de opdrachtgever of de inlener dat vereist. In de volgende alinea is meer informatie weergegeven over VCU en VIL VCU.

VCU en VIL VCU
VCU staat voor Veiligheids- en Gezondheid Checklist Uitzendorganisaties (en detacheringbureaus). Intercedenten dienen in bezit te zijn van een VIL VCU. De afkorting VIL VCU staat voor Veiligheid voor Intercedenten en Leidinggevenden / Veiligheid en Gezondheid Checklist Uitzendorganisaties. In feite bestaat de afkorting VIL VCU dus uit twee afkortingen die we voor de duidelijkheid even in twee korte rijtjes hebben neergezet:

  • Veiligheid voor
  • Intercedenten en
  • Leidinggevenden

 

  • Veiligheid, gezondheid en milieu
  • Checklist
  • Uitzendorganisaties

Intercedenten, leidinggevenden en andere interne werknemers van uitzendorganisaties die VCU gecertificeerd zijn dienen in bezit te zijn van een VIL VCU certificaat.

Tot zover de VCA certificering voor werknemers en uitzendorganisaties. Voor reguliere bedrijven zijn er echter ook verschillende soorten VCA certificaten. Deze worden in de alinea hieronder benoemd onder het kopje VCA bedrijfscertificaten.

VCA bedrijfscertificaten
In totaal zijn er drie verschillende VCA bedrijfscertificaten die door bedrijven in de techniek en de bouw kunnen worden behaald. Dit zijn dus bedrijfsgebonden VCA certificaten. We noemen ze hieronder:

  • VCA*
    Dit certificaat bevat één ster. Dit VCA niveau is gericht op de directe VGM- zorg bij de activiteiten die plaatsvinden op de werkvloer. Dit VCA certificaat met één ster is voor bedrijven die minder dan 35 werknemers aan het werk hebben en daarnaast geen hoofdaannemer zijn in hun bedrijfsactiviteiten.
  • VCA**
    Dit VCA certificaat bevat twee sterren. Het is een zwaarder VCA certificaat dan VCA*. Naast de hierboven genoemde aspecten worden bij VCA** ook de veiligheidsstructuren en veiligheidssystemen binnen het bedrijf van de aannemer beoordeeld. VCA met twee sterren is een certificering die bestemd is voor organisaties met meer dan 35 werknemers in dienst en bedrijven die ook als hoofdaannemer actief zijn. Ook als ze minder van 35 werknemers in dienst hebben en hoofdaannemerschap in als bedrijfsactiviteit hebben zullen de bedrijven moeten beschikken over VCA**.
  • VCA-P
    Dit is een speciaal VCA certificaat voor de petrochemie. Bij VCA-P staat de letter P voor petrochemie oftewel de petrochemische sector. Het VCA-P certificaat is bestemd voor bedrijven die werkzaamheden uitvoeren in de petrochemische sector. Dit is de sector waar olie en gas worden gewonnen en verwerkt tot producten. VCA-P is in feite een VCA certificaat met een extra aanvulling gericht op de risico’s van het werken in de petrochemische sector.

VCO certificering
Een VCA certificering die misschien wat minder bekend in de oren zal klinken is de VCO. De afkorting VCO staat voor Veiligheid, gezondheid en milieu Checklist Opdrachtgevers. Dit maakt tevens het doel duidelijk van het VCO certificaat. De VCO-certificatie is namelijk bedoelt voor opdrachtgevers die opdrachten vertrekken aan VCA gecertificeerde bedrijven of bedrijven die VCA gecertificeerd zouden moeten zijn. Doormiddel van VCO wordt aan opdrachtgevers de verplichting opgelegd om zorg te dragen voor de juiste voorwaarden en omstandigheden voor VCA-gecertificeerde aannemers en de uitzendkrachten die voor deze aannemers werken.

De uitzendkrachten die voor VCU- gecertificeerde uitzendorganisaties opdrachten uitvoeren zullen voor een opdrachtgever veilig hun werkzaamheden moeten kunnen uitvoeren en ook hun gezondheid mag tijdens het uitvoeren van de werkzaamheden niet geschaad worden. Een opdrachtgever is echter lang niet altijd VCA gecertificeerd omdat niet alle opdrachtgevers zelf actief werkzaamheden als aannemer uitvoeren in de bouw. Een particulier kan bijvoorbeeld ook opdracht geven om een bouwproject te laten uitvoeren, datzelfde geldt bijvoorbeeld voor een overheidsinstelling, school of een financieel bedrijf. Deze opdrachtgevers kunnen wel de opdracht geven aan bouwbedrijven en technische uitzendkrachten om technische werkzaamheden uit te voeren.

Doormiddel van een VCO certificaat maakt een opdrachtgever duidelijk dat deze de juiste arbeidsomstandigheden en voorwaarden wil creëren voor VCA-gecertificeerde aannemers als deze bij het VCO gecertificeerde bedrijf risicovolle werkzaamheden uitvoeren.

Oorzaken elektrocutie en kortsluiting

Werken met elektriciteit en elektrische installaties brengt risico’s met zich mee. De belangrijkste gevaren van werken met elektriciteit zijn elektrocutie en kortsluiting. Deze twee gevaren zijn bekend maar ondanks dat komen beide gevaren nog regelmatig voor op de werkplek. Bedrijven zijn verplicht om hun risico’s te inventariseren in een Risico Inventarisatie en Evaluatie. Bij veel bedrijven wordt in dit RI&E ook elektrocutie en kortsluiting als gevaar genoemd. In een plan van aanpak, dat onderdeel vormt van de Risico Inventarisatie en Evaluatie, wordt door een bedrijf aangegeven hoe de gevaren effectief bestreden kunnen worden. Daarbij kijkt men uiteraard ook naar de oorzaken. Door de oorzaken van de risico’s weg te nemen doet men aan bronbestrijding en dat is de beste preventie. Daarvoor is echter kennis nodig, daarom wordt in deze tekst basisinformatie weergegeven over elektrocutie en kortsluiting. Daarna worden een aantal mogelijke oorzaken benoemd.

Wat is elektrocutie?
Elektrocutie ontstaat wanneer een schadelijke elektrische stroomschok door een menselijk lichaam heen gaat met de dood tot gevolg. Als men niet dood gaat door de elektrische stroom door het lichaam dan spreekt men van elektrisering. Feitelijk is het woord elektrocutie een samenvoeging van de woorden elektro en executie. Tegenwoordig wordt elektrocutie gebruikt voor de doodstraf waarbij gebruik wordt gemaakt van elektrische stroom als voor ongelukken waarbij mensen dodelijk getroffen worden door elektrische stroom nadat ze spanningsvoerende delen van een elektrische installatie hebben aangeraakt. Elektrocutie kan optreden als het menselijk lichaam in contact komt met twee punten die een verschillend elektrisch potentiaal hebben. De elektrische stroom zal dan door het lichaam van een men heen gaan en zal daarbij de weg van de minste weerstand kiezen. Dat is in dit geval de bloedvaten, het hart en de longen. Dat zijn levensbelangrijke organen waardoor elektrocutie zo gevaarlijk is.

De grote van het gevaar is afhankelijk van de volgende factoren:

  • De weg die de elektrische stroom door het lichaam heeft afgelegd.
  • De duur dat een mens onder elektrische stroom heeft gestaan.
  • Isolerende factoren zoals handschoenen en kleding.
  • Het spanningsverschil tussen de contactpunten. Deze wordt weergegeven in Volt.
  • De stroomsterkte. Deze wordt weergegeven in Ampère.

Wat is kortsluiting?
Kortsluiting ontstaat wanneer twee delen van een elektrische installatie die beide onder spanning staan met elkaar in contact komen. Kortsluiting kan op verschillende manieren ontstaan bijvoorbeeld doordat men onvoldoende isolatie heeft aangebracht rondom de spanning voerende delen van de elektrische installatie die daardoor mogelijk met elkaar in contact kunnen komen. Ook de uitwerking van vocht kan kortsluiting veroorzaken omdat het meeste vocht elektrische stroom goed geleid. Kortsluiting kan ook een zogenaamde vlamboog veroorzaken. Bij een vlamboog legt de elektrische stroom een (meestal korte) afstand af door de lucht. Dit proces kan per ongeluk worden veroorzaakt maar er zijn ook situaties waarin bewust een elektrische vlamboog wordt gecreëerd. Denk hierbij aan het elektrisch booglassen. Het elektrisch booglassen is dus in feite een bewust veroorzaakte kortsluiting waarbij de lasser de hitte van de kortsluiting gebruikt om een smeltbad voor een lasverbinding te maken. De meeste kortsluiting ontstaat echter onbedoeld waardoor er vaak nog meer gevaren optreden zoals brand en explosies.

Oorzaken van kortsluiting en elektrocutie
Elektrocutie en elektrisering zijn dodelijk en levensgevaarlijk, kortsluiting hoeft niet altijd levensgevaarlijke gevolgen te hebben maar kan wel voor een kettingreactie aan risicovolle situaties zorgen bijvoorbeeld een defecte elektrische installatie, brand en explosie(s). Dit zijn grote risico’s en moeten daarom bestreden worden. Daarom is het van belang om de oorzaken van deze twee risico’s in kaart te brengen. We noemen de volgende mogelijke oorzaken:

  • Slechte isolatie van de delen waaruit de elektrische installatie bestaat.
  • Gereedschappen die werken op 220 volt zijn onvoldoende geïsoleerd. Deze moeten wettelijk dubbel geïsoleerd zijn (herkenbaar aan het logo met een kleiner vierkant in een groter vierkant.
  • Onjuist handgereedschap. Wanneer men werkt aan een elektrische installatie moet de monteur de elektrische spanning van de installatie afhalen en dit controleren. Voor de zekerheid werkt een monteur ook met speciaal handgereedschap voor elektromonteurs. Dit is goed geïsoleerd gereedschap. Mocht er toch spanning op de installatie komen te staan dan kan dit gereedschap als het goed gebruikt wordt een belangrijke extra veiligheidsmiddel zijn.
  • Machines of gereedschappen zijn beschadigd waardoor de isolatie niet meer werkt en spanningsvoerende delen met elkaar in contact kunnen komen.
  • Onjuiste installatie van elektrische componenten. Er is teveel weerstand tegen de elektrische stroom in de bedrading of in de componenten aanwezig waardoor deze oververhit raken.
  • Men werkt aan elektrische installaties zonder dat men de elektrische installatie eerst spanningsvrij maakt.
  • De installatie of machine is niet geaard of de aarding is onjuist aangelegd waardoor er een aardfout kan ontstaan. Elektrische stroom kan dan via het lichaam naar de aarde stromen waardoor elektrisering optreed of elektrocutie.

Preventieve maatregelen
De hierboven genoemde oorzaken van kortsluiting, elektrisering en elektrocutie kunnen voor een groot deel worden voorkomen als men er voor zorgt dat de elektrische installaties door een vakbekwaam elektromonteur zijn aangelegd. Een vakbekwaam persoon wordt ook wel met de letters VP aangeduid en heeft een erkende elektrotechnische opleiding gehad. Een voldoende opgeleid persoon of voldoende onderricht persoon (VOP) is voldoende geïnstrueerd om eenvoudige duidelijk omschreven werkzaamheden uit te voeren aan elektrische installaties. Een VOP ontvangt daarvoor een aanwijzingsformulier. Wanneer werkzaamheden zijn uitgevoerd aan een elektrische installaties zal de vakbekwaam persoon, meestal een eerste elektromonteur of leidinggevend elektromonteur, de installatie controleren voordat deze in gebruik genomen zal worden.

Daarnaast zal men gebruik moeten maken van dubbel geïsoleerd elektrisch gereedschap en geïsoleerd handgereedschap. Als men werkt met kabelhaspels dan moet de kabelhaspel helemaal worden afgerold. Als er namelijk veel elektrisch vermogen wordt afgenomen zal de elektriciteitskabel in de kabelhaspel heel heet kunnen worden en de elektrische isolatie kunnen gaan smelten en branden.

Aardlekautomaat
Elektrische installaties moeten uiteraard worden voorzien van de verplichte beschermingssystemen waaronder een aardlekautomaat. Deze beschermd de elektrische installatie tegen overbelasting, kortsluiting en een hoge lekstroom in het elektriciteitsnet. De aardlekautomaat wordt ook wel afgekort met alamat. Een aardlekautomaat bevat verschillende kleine hendeltjes of knopjes dienaar beneden klikken als er in een bepaalde grote een fout wordt geconstateerd. De aardlekautomaat is de vervanger van de oude stoppenkast die zekeringen of stoppen bevatten met een smeltveiligheid.

Aardlekschakelaar
Aardlekschakelaars vormen een elektrische beveiliging als er in een elektrische installatie een lekstroom optreed. In dat geval schakelt de aardlekschakelaar de elektrische spanning uit en wordt een installatie spanningsloos gemaakt. Een aardlekschakelaar is iets anders dan een aardlekautomaat. Een aardlekautomaat is namelijk een combinatie van een aardlekschakelaar en een installatieautomaat. Als men dus een elektrische installatie heeft zonder aardlekautomaat dan is de kans groot dat er een installatieautomaat is geplaatst. De installatieautomaat wordt ook wel een zekeringautomaat of maximumschakelaar genoemd. Als er een installatieautomaat is geplaatst dan dient er voor de veiligheid een aardlekschakelaar aanwezig te zijn.

Arbeidsomstandigheden en werkplek
Het is uiteraard belangrijk dat men rekening houdt met de werkplek waarin men werkt aan elektrische installaties. Als deze werkplek vochtig is zal de kans op elektrocutie of elektrisering toenemen evenals de kans op kortsluiting. Dit is ook het geval wanneer men werkt aan machines en ruimten die van geleidend materiaal zijn gemaakt. verder dient men rekening te houden met het feit dat vonken die ontstaan door bijvoorbeeld kortsluiting een brandbaar mengsel kunnen ontsteken. In ruimten waar deze brandbare of explosieve stoffen aanwezig zijn gelden speciale richtlijnen voor elektrische installaties en mag niemand aan deze elektrische installaties werken tenzij hiervoor een specifieke werkvergunning is afgegeven.

Veilig autogeen lassen

Autogeen lassen is een lasproces waarbij een lasser gebruik maakt van een gas in combinatie met zuurstof om een vlam te creëren waarmee metaal op een smeltpunt wordt gebracht zodat een lasverbinding kan worden gemaakt. Bij autogeen lassen wordt gebruik gemaakt van acetyleen. Door gebruik te maken van de oxy-acetyleen vlam kan men zeer hoge temperaturen bereiken. Deze hoge temperaturen kunnen oplopen tot 3.200 graden Celsius. Het oxy-acetyleen gasmengsel is een mengsel waarmee een temperatuur kan worden behaald die hoog genoeg is om staal te laten smelten zodat de lasser een lasverbinding kan maken. Autogeen lassen wordt onder andere toegepast in het lassen van dikwandige stalen cv-leidingen. Natuurlijk is een hoge temperatuur belangrijk als men met gas wil lassen maar het brengt ook gevaren met zich mee. Hieronder staan de belangrijkste gevaren die van toepassing zijn op autogeen lassen.

Gevaren van autogeen lassen
Autogeen lassen is een lasproces waarbij men gebruik maakt van een vlam. Men heeft het daarom ook wel over lassen met vlam in plaats van het lassen met een elektrische boog. Het lassen met vlam heeft een aantal specifieke risico’s waar men rekening mee dient te houden:

  • Kans op brand door de hoge temperaturen die tijdens het lassen en het verbranden van het oxy-acetyleen mengsel ontstaan.
  • Lasspetters die tijdens het lassen kunnen ontstaan zorgen ook voor risico’s op verbranding.
  • De cilinders waar het brandbare gas onder druk wordt opgeslagen zorgen voor een risico op explosie brand en oxideren.
  • Vlamterugslag kan voorkomen bij het lassen met acetyleen. Tijdens de vlamterugslag stroomt het brandbare gasmengsel terug in de brander waardoor er een groot gevaar is voor een explosie.
  • Er bestaat kans op lekkage van zuurstof met brand tot gevolg.
  • Ook brandbaar gas kan lekken en een enorm risico veroorzaken op brand.
  • De gassen die worden gebruikt zijn zwaarder dan lucht en kunnen daardoor onder in ruimten blijven hangen. Vooral wanneer men werkt in een kruipruimte of kelder, kortom de laagste ruimtes in een gebouw, loopt men gevaar. Het gas blijft in deze ruimten hangen en zorgt er voor dat men kan stikken.
  • Acetyleen wordt opgeslagen in een aceton opgelost mengsel in een poreuze massa. Dit mengsel moet rechtop worden vervoerd. Als dit niet gebeurd en de fles liggend wordt vervoerd worden de componenten gescheiden en is het mengsel zeer explosiegevaarlijk en mag beslist niet meer gebruikt worden voor het lasproces.

Autogeen lassen zorgt voor grote risico’s die met name verbonden zijn aan het brandbare mengsel waarmee men last. Er zijn echter ook een aantal algemene aspecten waarmee men rekening dient te houden voordat men autogeen gaat lassen. Deze aspecten zijn in de volgende alinea benoemd.

Veiligheidsinstructies voor autogeen lassen
De volgende veiligheidsinstructies bevatten instructies voor het autogeen lassen specifiek. Daarnaast zijn ook een aantal algemene veiligheidsinstructies benoemd die van toepassing zijn op vrijwel alle lasprocessen waaronder elektrisch booglassen:

  • Draag de voorgeschreven brandvertragende lasoveral.
  • Draag een veilige lasbril die specifiek voor autogeen lassen is ontwikkeld.
  • Verwijder brandbare materialen rondom de lasplek.
  • Scherm de lasplek goed af.
  • Draag de juiste lashandschoenen.
  • Stel de vlam goed in een conische vlam is het beste. Als men een verkeerde ‘punt’ heeft op de vlam zal het lassen moeilijk worden en kan er schade aan het werkstuk ontstaan en mogelijk meer spetters en brand.
  • Zorg er voor dat brandbare stoffen waaronder acetyleen, zuurstof niet in de buurt van vuur komen en goed zijn afgesloten. Ook dienen de slangen goed zijn aangesloten op de lasapparatuur.
  • Zorg daarnaast voor een nette opgeruimde werkplek waarbij jezelf maar ook anderen niet kunnen struikelen over materialen op de werkvloer.
  • Vervoer een acetyleenfles altijd rechtop zodat het mengsel in de fles niet tot een gevaarlijke explosieve massa wordt gemengd.
  • Ook tijdens het lassen dient de acetyleenfles rechtop te staan.
  • Zorg er voor dat de lasdampen die tijdens autogeen lassen ontstaan worden afgezogen door een speciale afzuiginstallatie.
  • Mocht een acetyleenfles omvallen dan dient deze zo snel mogelijk weer rechtop gezet te worden en mag men daar de eerste vier dagen niet mee lassen.
  • Houdt blusmiddelen binnen handbereik.

Tot slot nog de opmerking dat autogeen lassen geen lasproces is voor beginners. Zorg er voor dat je goede instructies krijgt van een ervaren autogeen lasser. Werk in ieder geval onder toezicht als je voor het eerst autogeen last. Het autogeen lassen is een lasproces dat je leert door ervaring en dat kost tijd en veel oefening. Men moet echter rekening houden met de risico’s als men dat niet doet is autogeen lassen levensgevaarlijk.

Veilig elektrisch lassen

Elektrisch lassen is een verzamelnaam voor verschillende lasprocessen waarbij men elektriciteit gebruikt om een lasverbinding tot stand te brengen. De bekendste categorie hiervan is het elektrisch booglassen waar ook het lassen met booglassen met beklede elektrode (afgekort BMBE lassen) en het MIG/ MAG lassen (afkortingen: Metal Inert Gas en Metal Active Gas) toe behoren.

Toepassing elektrisch lassen
Elektrisch lassen komt veel voor in de techniek. Doormiddel van de verschillende soorten lasprocessen kunnen onuitneembare lasverbindingen tot stand worden gebracht. Daarbij is niet alleen het lasproces van belang maar ook de lasdraad (lastoevoegmateriaal) en het beschermgas dat ook wel backinggas wordt genoemd. Voor het lassen van staal gebruikt men over het algemeen goedkope actieve gassen. Voor het lassen van RVS, aluminium en hoogwaardige roestvaste legeringen gebruikt men over het algemeen inerte gassen zodat het smeltbad goed beschermd is tegen de corrosieve werking van zuurstof en andere invloeden uit de atmosfeer. 

Vaak wordt BMBE lassen elektrisch lassen genoemd of elektrodelassen. Dit is echter niet geheel juist want er zijn verschillende elektrische lasprocessen. Zo behoort ook TIG-lassen (TIG=Tungsten Inert Gas) tot het elektrisch lassen alleen smelt hierbij de Wolfram elektrode niet af. Bij BMBE lassen smelt de elektrode wel af evenals bij MIG/MAG lassen waarbij de elektrode tevens de lasdraad is. Kortom er zijn verschillende elektrische lasprocessen. Omdat elektrisch lassen zo vaak wordt gedaan in de techniek is het belangrijk om een aantal veiligheidsaspecten te benoemen zodat de veiligheid op de werkvloer wordt bevorderd. In de volgende alinea zijn eerst een aantal specifieke gevaren genoemd met betrekking tot lassen en dan met name elektrisch boog lassen.

Gevaren van elektrisch lassen
Elektrisch lassen kent een aantal specifieke en een aantal algemene gevaren waar men mee rekening dient te houden voordat men gaat lassen. We noemen de volgende:

  • Men werkt met elektriciteit waardoor er gevaar is op elektrocutie.
  • Er is brandgevaar vanwege de lasspetters die van de meeste lasprocessen af komen.
  • Er is ook explosiegevaar wanneer men last in een omgeving met mogelijke explosieve stoffen en explosieve mengsels.
  • De Uv-straling die bij de lasprocessen ontstaat kan de ogen beschadigden (lasogen)
  • De infraroodstraling die vrijkomt bij de lasprocessen is eveneens slecht voor de ogen.
  • Ook de huid kan verbranden door de Uv-straling.
  • De lasspetters kunnen daarnaast ook brandwonden veroorzaken.
  • De lasdampen kunnen longaandoeningen veroorzaken.

Dit zijn slechts een aantal gevaren die aanwezig kunnen zijn tijdens het elektrisch lassen. In een Risico Inventarisatie en Evaluatie zullen bedrijven de specifieke risico’s op de werkplek in kaart moeten brengen. Als binnen een bedrijf wordt gelast dan zal het bedrijf ook deze lasprocessen moeten beschrijven met de bijbehorende risico’s. Dit alles staat in de Risico Inventarisatie en Evaluatie van het bedrijf. Dit RI&E vormt een belangrijk deel van het arbobeleid van het bedrijf. Bedrijven zijn verplicht om een arbobeleid te voeren en zijn daardoor eveneens verplicht om een Risico Inventarisatie en Evaluatie te houden. Bovendien moeten bedrijven in een plan van aanpak aangeven hoe ze de risico’s willen verwijderen, reduceren en beheersen. Veiligheidsvoorschriften en een duidelijke werkinstructie zijn daarbij van belang. Ook kan een bedrijf werken met werkvergunningen waarbij men duidelijk binnen veiligheidskaders zal moeten werken om gevaren op de werkvloer te voorkomen. Hieronder staan nog een aantal belangrijke veiligheidsinstructies die van toepassing zijn op (elektrisch) lassen.

Veiligheidsinstructies voor elektrisch lassen
Elektrisch lassen zorgt voor bepaalde risico’s dat heb je in de vorige alinea kunnen lezen. Er zijn echter nauwelijks mogelijkheden om elektrisch lassen te vervangen voor een verbindingsproces met dezelfde kwaliteiten. Daarom kan men het risico van elektrisch lassen nooit geheel wegnemen. Men kan wel trachten de risico’s zoveel mogelijk te beheersen. Dit kan door beheersmaatregelen, waaronder het verstrekken van de juiste persoonlijke beschermingsmiddelen en het verstrekken van werkinstructies. Hieronder staan een aantal belangrijke instructies die de veiligheid bevorderen wanneer men elektrisch gaat lassen:

  • Draag de voorgeschreven brandvertragende lasoveral.
  • Draag werkschoenen die speciaal voor lassers zijn ontworpen met een flap over de veters zodat deze niet kunnen verbranden. Ook laslaarzen zijn een veilige optie.
  • Draag een veilige laskap het liefst met een beademing er aan vast zodat men geen giftige lasdampen inhaleert.
  • Zorg voor ventilatie.
  • Maak gebruik van een afzuigsysteem voor lasdampen.
  • Verwijder brandbare materialen rondom de lasplek.
  • Scherm de lasplek goed af met bijvoorbeeld lasschermen zodat andere mensen die geen lashelm dragen geen last krijgen van de Uv-straling en infraroodstraling.
  • Bedek de hals en andere delen van het lichaam goed als je last in verband met het Uv-licht en de lasspetters.
  • Draag de juiste lashandschoenen.
  • Stel het lastoestel goed in.
  • Zorg er voor dat brandbare stoffen waaronder zuurstof niet in de buurt van vuur komen en goed zijn afgesloten en goed zijn aangesloten op de lasapparatuur.
  • Zorg daarnaast voor een nette opgeruimde werkplek waarbij jezelf maar ook anderen niet kunnen struikelen over materialen op de werkvloer.
  • Houd blusmiddelen binnen handbereik

Wat is een laselektrode?

Een laselektrode is een staafvormig stukje metaal dat bij de meeste elektrische lasprocessen wordt gebruikt om zowel het werkstuk als het lastoevoegmateriaal doormiddel van elektrische spanning tot een smeltbad te brengen. Er zijn verschillende soorten laselektroden die in de praktijk in lasprocessen worden gebruikt. Deze laselektroden kunnen worden verdeeld in twee hoofdgroepen namelijk de afsmeltende laselektroden en niet-afsmeltende elektroden.

Afsmeltende elektroden
Afsmeltende laselektroden zijn elektroden die door de hitte van het lasproces afsmelten en in het smeltbad opgaan. Deze afsmeltende elektrodes kunnen mechanisch worden aangevoerd zoals bij MIG/MAG lassen gebeurd maar dat hoeft niet. Bij lassen met beklede elektrode (BMBE) maakt men ook gebruik van een afsmeltende elektrode alleen wordt deze elektrode aan de voorkant van het laspistool geplaatst. De afsmeltende elektrode heeft tijdens het lassen een dubbele functie. De afsmeltende elektrode geleid de stroom die nodig is voor de verhitting van het werkstuk. Daarnaast zorgt de gesmolten elektrode ervoor dat er materiaal wordt toegevoegd aan het lasproces.

Niet afsmeltende elektroden
Laselektroden die niet afsmelten worden ook gebruikt om een elektrische boog te creëren. Deze elektroden worden door de elektrische spanning niet tot smelten gebracht. Het materiaal van de niet afsmeltende laselektrode moet een zeer hoog smeltpunt hebben. Een voorbeeld van dergelijk materiaal is wolfraam. Een wolfraam elektrode wordt gebruikt bij TIG lassen, dit lasproces wordt voluit geschreven als tungsten inert gas. Hierbij staat tungsten voor wolfraam. Er kan ook gebruik worden gemaakt van goed geleidende laselektroden die gekoeld worden zodat ze tijdens het lassen niet smelten.

Stift- en boutlassen
Het stiftlassen of boutlassen is een speciaal lasproces hierbij heeft men op de stift of bout een klein lipje geplaatst dat tot versmelten wordt gebracht en zich zo hecht aan de ondergrond. De elektroden die bij dit lasproces worden gebruikt creëren een spanning die loopt langs de lasbout. Het lipje wordt door deze spanning tot een smeltbad gebracht en hecht zich aan de ondergrond. De lasbout zelf blijft verder geheel in tact. Feitelijk wordt hierbij ook gebruik gemaakt van niet afsmeltende laselektroden in combinatie met een beperkt afsmeltende lasbout waarvan het uiteinde kan worden beschouwd als een druppel lastoevoegmateriaal.

Wat is een allround lasser?

Een allround lasser is een lasser die verschillende lastechnieken beheerst en daardoor allround ingezet kan worden in het maken van lasverbindingen in verschillende materialen behulp van verschillende lasprocessen. In de metaaltechniek worden verschillende verbindingen toegepast. Men onderscheid hierin de uitneembare verbindingen zoals schroefdraadverbindingen en niet-uitneembare verbindingen waarbij de lasverbinding in de metaaltechniek het bekendste voorbeeld is. Het maken van lasverbindingen vereist kennis en vaardigheid.

Daarbij komt dat lasprocessen onderling sterk verschillen. Dat zorgt er voor dat lassers onderling ook verschillen. Er zijn lassers die veel ervaring hebben met MIG/MAG lassen maar er zijn ook lassers die goed TIG kunnen lassen. Ook BMBE (elektrode) lassen wordt nog veel toegepast. In de installatietechniek gebruikt men daarnaast ook nog het autogeen lassen waarbij men gebruik maakt van een vlam. Een allround lasser beheerst in de praktijk een aantal van de hiervoor genoemde lasprocessen. Lassers die alle gangbare (want er zijn er nog veel meer) lasprocessen beheersen zijn er bijna niet.

Een allround lasser of specialist
Iemand die zich een allround lasser noemt beheerst in de praktijk meestal MIG/MAG en TIG eventueel ook nog BMBE-lassen, dit is lassen met een beklede elektrode. Een lassers is pas allround als hij of zij met deze lasprocessen zelfstandig een werkstuk kan aflassen. Als een lasser ook nog een werkstuk kan samenstellen op basis van een tekening dan spreekt men ook wel over een samensteller lasser. Tekening lezen vereist echter technisch inzicht en niet alle tekeningen zijn gelijk.

Een allround samensteller lasser kan in de praktijk meerdere lasprocessen uitvoeren en kan een diversiteit aan tekeningen lezen zodat deze werknemer een werkstuk van het begin tot het einde in theorie zou moeten kunnen bouwen en aflassen. Allround samenstellers lassers zijn er in de praktijk bijna niet. Veel lassers specialiseren zich in het bouwen of basis van tekeningen of het aflassen.

Daarbij worden veel lassers ook nog gespecialiseerd in een bepaald lasproces en materiaal. Denk hierbij aan de gecertificeerde lassers die bijvoorbeeld dunwandige rvs-leidingen onder een hoeklas van 45 graden (HL-45 of positie G6) kunnen lassen. Deze lassers zijn meestal niet (meer) allround maar juist gespecialiseerde (af)lassers.

Hoe wordt ik een allround lasser?
Niet iedereen kan een allround lasser worden. De theorie met betrekking tot lassen is niet erg complex maar de vaardigheid echter wel. Lassers doen veel werk op basis van inzicht en gevoel en dat is niet voor iedereen weggelegd. Een lasser weet dat tijdens het lasproces warmte wordt ingebracht in het materiaal. Daardoor gaat het materiaal vervormen. Het ene lasproces brengt echter meer warmte in het werkstuk dan het andere. Daarnaast moet een TIG lasser met één hand de lastoorts bedienen om met een andere hand het toevoegmateriaal in het smeltbad te brengen. De lastoorts van een TIG-lasapparaat bevat een niet-afsmeltende wolfraam (tungsten) elektrode. MIG/MAG lassen is weer een heel ander proces waarbij gebruik wordt gemaakt van lasdraad dat automatisch wordt doorgevoerd vanuit het laspistool richting het werkstuk. Bij lassen met een beklede elektrode maakt men niet direct gebruik van een beschermgas, in tegenstelling tot de hiervoor genoemde lasprocessen. In plaats daarvan maakt men gebruik van een elektrode bekleding die tijdens het lassen verbrand waardoor een beschermgas vrij komt. De elektrode smelt dus af waardoor de lastoorts als het ware steeds korter wordt.

Een allround lasser heeft ervaring in meerdere van deze lasprocessen (en eventueel ook andere lasprocessen) en deze ervaring krijg je alleen door heel veel te oefenen. Lassen leer je vooral door te doen. Dit kan in de praktijk zijn maar ook op school als daar een praktijkruimte aanwezig is met verschillende soorten lastoestellen.

Waar werken allround lassers?
Er zijn specifieke bedrijven die regelmatig vacatures publiceren voor allround lassers. Dit zijn vooral bedrijven die verschillende producten maken van diverse materialen. Een bedrijf met een rvs-afdeling en een staalafdeling heeft bijvoorbeeld vaak behoefte aan een allround lasser die zowel MIG/MAG kan lassen voor het staal en TIG kan lassen voor het rvs. Ook bedrijven die werken als toeleverancier voor verschillende opdrachtgevers zoeken vaak flexibel inzetbare lassers in hun vacatures. Een allround lasser is vaak flexibel inzetbaar.

Helemaal mooi is het wanneer de allround lasser ook nog goed kan samenstellen waardoor hij of zij zelfstandig op bepaalde projecten kan worden ingezet. In de praktijk werken allround lassers vaak bij kleine metaalbedrijven. Bij grote metaalbedrijven zijn de lasprocessen vaak gespecialiseerder en werkt men bijvoorbeeld alleen op een rvs-afdeling om daar TIG te lassen of alleen op een staalafdeling om daar MAG (CO2) te lassen. In grote bedrijven wisselt men over het algemeen minder lassers uit tussen afdelingen terwijl dit bij kleinere bedrijven wel gebeurd als er een ander type product wordt gemaakt.

Wat is lassen met gevulde draad?

Lassen met gevulde draad is een aanduiding die men gebruikt wanneer men in het MIG/MAG-lasproces geen gebruik maakt van een extern toegevoegd beschermgas in een gasfles maar van een gevulde lasdraad. Lassen met gevulde draad wordt ook wel aangeduid met de Engelse termen innershield® welding of fluxed core arc welding.

Het lasproces met gevulde draad
Zoals hierboven aangegeven maakt men bij het lassen met gevulde draad gebruik van het MIG/MAG lasproces. Hierbij wordt de draad door de lastang heengevoerd en in het smeltbad aangebracht. Dit smeltbad moet echter beschermd worden tegen invloeden van buiten af anders verbrand de lasverbinding of ontstaan er andere schadelijke verstoringen in de lasverbinding. Deze lasfouten kunnen worden voorkomen door gebruik te maken van een beschermgas. Bij MIG/MAG lassen is dit beschermgas een inert gas (daar staan de letters ‘IG’ voor) of een actief gas (daar staan de letters ‘AG’ voor). Echter maakt men bij gewoon MIG/MAG lassen gebruik van een gasfles met inert gas of actief gas.

Bij lassen met gevulde draad wordt in plaats van een externe gasfles gebruik gemaakt van een holle draad. Deze holle draad is gevuld met een fijn laspoeder zoals rutiel. De gevulde draad vormt de laselektrode. Deze laselektrode smelt tijdens het lasproces af. De buitenkant van de lasdraad is van metaal gemaakt en gaat op in het smeltbad maar de binnenkant is gemaakt van een poeder dat tijdens het verhitten wordt omgezet in gassen. Deze gassen beschermen het smeltbad tegen de schadelijke uitwerking van de lucht rondom het lasproces. Zo zorgen de beschermgassen er voor dat het vloeibare metaal van het smeltbad beschermd wordt tegen de indringing van zuurstof.

Door het verbranden van de draadvulling ontstaat ook verband afvalmateriaal. Dit afvalmateriaal gaat boven op het smeltbad drijven en vormt een zogenaamde slak. De snelstollende slak beschermd het smeltbad en ondersteund bovendien de verticale en bovenhandse laspositie. Daarnaast wordt door de slak de kans op spannen en stralen verkleind. Hierdoor kan de lasser met relatief hoge stromen lassen. De slak kan na het uitharden vrij gemakkelijk worden verwijdert met bijvoorbeeld een lasbeitel.

Verschillende soorten lasdraad
Door de jaren heen zijn er veel verschillende lastoevoegmaterialen ontwikkeld. Ook voor het lassen met gevulde draad zijn veel verschillende lasdraden ontwikkeld. Er zijn diverse materialen die gebruikt kunnen worden als laspoeder, rutiel is hiervan een bekend voorbeeld. Naast de laspoeders kunnen er ook verschillen zijn in de manier waarop de lasdraad is geproduceerd. Er bestaat bijvoorbeeld rondgevouwen lasdraad en dichtgelaste lasdraad. In de lasmethodebeschrijving is beschreven welke lasdraad en welk lasproces toegepast moet worden. Vaak is een lascertificaat vereist. Dit certificaat is persoonsgebonden en maakt inzichtelijk welke lasser bevoegd is om een bepaald lasproces uit te voeren. De lasser dient zich echter houden aan de lasmethodebeschrijving en de daarin aangegeven gegevens. Als er is aangegeven dat er met een poedergevulde draad gelast moet worden is er ook omschreven welk laspoeder in de lasdraad moet zitten om het lasproces conform de kwalificatie te laten verlopen.

Kun je zink lassen?

Veel metalen constructiedelen worden verzinkt. Dit beurt meestal in speciale zinkbaden waar de staalconstructiedelen thermisch verzinkt worden. Dit verzinken wordt gedaan om de constructiedelen te beschermen tegen corrosie. Hoewel zink minder edel is dan staal is de weerstand van zink tegen corrosie beter. In tegenstelling tot de roest die ontstaat op staal (ferro) is de zinkoxide een stevige beschermlaag die de onderliggende materiaal laag nauwelijks verteerd. Roest of ijzeroxide lost langzamerhand de onderliggende materiaallagen op maar zinkoxide is zeer duurzaam. Om roestvorming te voorkomen kan men staal naast verzinken ook coaten en verven.

Lassen
Het maken van een las is een veel voorkomende techniek om constructiedelen met elkaar te verbinden in de werktuigbouwkunde. Een lasverbinding is een sterke verbinding als deze goed wordt gemaakt. Een lasverbinding is onuitneembaar. Dit houdt in dat een lasverbinding permanent is tenzij men met geweld deze verbinding uit elkaar wil halen doormiddel van slijpen, zagen, gutsen of snijden. Door deze technieken wordt de las verwijdert en is de verbinding verdwenen.

Lassen van staal
Het lassen van staal komt veel voor. Staal is in feite ijzer met een klein percentage koolstof (lager dan 1,9 procent). Dit koolstofpercentage kan eventueel nog lager zijn indien dat gewenst is. Hoe lager het koolstofpercentage hoe elastischer het staal. De hardheid van het staal neemt dan echter wel af en men zal ook specifieke lastoevoegmaterialen moeten gebruiken bij speciale staalsoorten. Staal kan op verschillende manieren worden gelast. Meestal gebruikt men MIG/MAG lassen maar elektrode lassen (BMBE) en ook TIG lassen wordt regelmatig gebruikt. Autogeen lassen is een lasproces dat in de (dikwandige) installatietechniek wordt gebruikt voor het maken van verbindingen tussen stalen buizen.

Zink lassen
Zink reageert anders op lasprocessen dan staal. Als men zink last komt er een vreemde witte rook vrij. Dit is een rook die vrijkomt van zinkoxides en heeft een zure geur. Zink en zinkoxides worden niet apart genoemd op de MAC waarde lijst. Dit is een lijst met stoffen die giftig zijn. Hoewel zink in het lichaam van een mens voorkomt reageert het lichaam van een mens sterk op de lasrook die vrijkomt bij het lassen van zink. Dit wordt ook wel zinkkoorts genoemd. De term ‘koorts’ verwijst naar de reacties die het lichaam vertoont als men wordt blootgesteld aan de rook. Deze reacties zijn koude rillingen, verhoogde speekselproductie en daarnaast kan men ook gaan overgeven. De zinkkoorts verschijnselen verdwijnen meestal na 24 uur of hooguit 48 uur.

Voorzorgsmaatregelen voor zink lassen
Zinkkoorts is alles behalve goed voor de gezondheid. Het is onduidelijk of er blijvend letsel optreed wanneer men regelmatig zink last. Daarom is het verstandig om de lasser zo goed mogelijk te beschermen tegen de lasrook die vrijkomt bij het lassen van zink. Het beste kan men er voor zorgen dat men geen lasrook van zinkoxides krijgt. Dit kan men voorkomen door de zinklaag van de constructiedelen eerst zorgvuldig weg te slijpen (daarbij uiteraard gebruikmaken van de voorgeschreven gelaatsbescherming). Vervolgens kan men het staal onder de zinklaag gaan lassen. Men kan er daarnaast voor zorgen dat er een goed rookafzuiging is op de werkplek. Ook adembescherming is een goed beschermingsmiddel voor de lasser. Meestal wordt dit gedaan door gebruik te maken van een lashelm met verse luchttoevoer.

Wat is rutiel en waar wordt rutiel voor gebruikt?

Rutiel is een materiaal met een chemische formule TiO2. Het materiaal rutiel is de meest algemene vorm van titanium-oxide. Naast rutiel komen er nog twee andere vormen voor van TiO2, dit zijn brookiet en anataas.

Eigenschappen van rutiel
Rutiel is een watervrije van titanium. Bij dit materiaal komen veel tweelingen voor. De symmetrie is  tetragonaal, ribben a = 45.93 nm (nanometer), c = 29.59 nm. De chemische samenstelling van rutiel kan sporen van ijzer bevatten. Daarnaast kan rutiel ook sporen van tantaal of niobium bevatten. Over het algemeen is de samenstelling van rutiel TiO2.

Waar om rutiel voor?
Rutiel is een materiaal dat in veel verschillende metamorfe en stollingsgesteenten voor kan komen. De hoeveelheid rutiel in gesteenten is over het algemeen beperkt. Rutiel is daarnaast een belangrijk ertsmineraal voor  (Ti). In sommige zware-mineraal zanden is zoveel rutiel aanwezig dat men er rutiel uit kan winnen.

Waar wordt rutiel voor gebruikt?
Een belangrijke industriële toepassing waar men rutiel voor gebruikt is las-elektrodes. Hierbij kan men rutiel toepassen in de bekleding van laselektrodes. Deze elektrodes bevatten siliciumdioxide in combinatie met titanium(IV)oxide (dit is in feite rutiel). Daarnaast kunnen bij bepaalde lasprocessen  rutiel gevulde toevoegdraden worden toegepast. Ver der wordt bij het zogenoemde Onder Poederdek lassen (OP-lassen)  vaak gebruik gemaakt van poeders die rutiel bevatten.

Rutiel wordt in de bekleding van elektrodes en laspoeder toegepast om het smeltbad van de las te beschermen en een slak te vormen op de lasnaad. Hierdoor is de lasnaad beschermd tegen chemische invloeden uit de lucht. Deze chemische invloeden kunnen de kwaliteit van de nadelig beïnvloeden. Daarnaast zorgt de slak er voor dat het smeltbad minder snel stolt waardoor de kans op krimpscheuren wordt verkleind.

Wat wordt bedoelt met slak bij lasprocessen?

Het woord ‘slak’ wordt regelmatig gebruikt bij lasprocessen. Dit woord heeft niets met een dier of een aanduiding van snelheid. Ook heeft de slak die vrijkomt bij lasprocessen niets te maken met de zogenoemde hoogovenslak die vrijkomt bij het smelten van ertsen en metalen in hoogovenprocessen. In plaats daarvan heeft het woord ‘slak’ bij lasprocessen te maken met een materiaal dat vrij kan komen bij het lasproces. De slak die hierbij vrij kan komen is een bros materiaal dat een beetje glasachtig is. De slak bij lasprocessen kan bestaan uit verschillende materialen. Het ontstaan van een slak tijdens het lasproces kan gewenst zijn maar ook ongewenst.

Hoe ontstaat slak bij lasprocessen?
Niet bij alle lasprocessen ontstaat een slak. Een slak ontstaat bij lasprocessen waarbij gebruik wordt gemaakt van laspoeder zoals bij onder poederdek lassen (OP-lassen) of bij beklede elektrodelassen (BMBE lassen). Hierbij ontstaat de slak als een restproduct of afvalproduct. Het laspoeder of de elektrodebekleding smelt door de hitte van het lasproces. Dit materiaal gaat als het ware op het smeltbad drijven en is in eerste instantie vloeibaar. Wanneer de las afkoelt is ook de slak afgekoeld en wordt de slak zichtbaar in de vorm van een harde breekbare brosse laag. De slak kan zich stevig hechten op de lasnaad maar het is ook goed mogelijk dat de slak als het ware achter de lastoorts weg krult.

Bij welke lasprocessen ontstaat slak?
Hiervoor zijn al een aantal lasprocessen genoemd waarbij slak kan ontstaan. Er zijn lasprocessen waarbij men opzettelijk een slak produceert om de las te beschermen tegen invloeden van buitenaf. Voorbeelden van dergelijke lasprocessen zijn:

  • BMBE lassen, lassen met beklede elektrode
  • Onder Poederdek lassen, OP-lassen
  • Elektroslaklassen
  • Exothermisch lassen
  • Lassen met poedergevulde draad,

Als men geen gebruik maakt van elektrodebekleding of poeder maar een beschermgas of vacuüm toepast, is de kans op het ontstaan van een slak kleiner. Bij het MIG/MAG lassen kan nog wel eens een slak ontstaan. In dit geval ontstaat de slak niet uit toevoegmateriaal maar uit verontreinigingen die aanwezig waren in de laskanten van de werkstukken. Deze verontreinigingen kunnen bijvoorbeeld vuil en oxide zijn. Ook door het verbranden van het lasmateriaal kan een slak ontstaan. Het verbranden van lasmateriaal gebeurd als het lasproces onvoldoende is beschermd.

Wat is het nut van een slak bij lasprocessen?
Hiervoor zijn een aantal lasprocessen genoemd waarbij opzettelijk een slak wordt geproduceerd tijdens het lasproces. Er zijn een aantal redenen waarom er bewust voor wordt gekozen om tijdens het lassen een slak te produceren. Een slak is allereerst een bijproduct dat slechts van tijdelijke aard is. De slak wordt na uitharding meestal meteen verwijdert door de lasser of nabewerker. Dit verwijderden van de slak kan doormiddel van het wegbikken van de slak met een beitel.

Tijdens het lassen heeft de slak een belangrijk nut omdat deze het smeltbad beschermd tegen ongewenste invloeden rondom het lasproces. De slak beschermd met name het smeltbad tegen verbranding tegen inwerking van stikstof uit de omringende lucht. Daarnaast heeft de slaklaag ook een isolerende werking die er voor zorgt dat de lasnaad minder snel afkoelt.

Door zure of rutiele lastoevoegmaterialen kan de oppervlaktespanning van het smeltbad worden verlaagd. Hierdoor vloeit de las mooi en wordt deze glad. De slak kan ook een ondersteunende functie hebben bij het verticaal of bovenhands lassen. Door de slak kan worden voorkomen dat het smeltbad omlaag gaat stromen voordat de las gestold is. Dit komt door basische toevoegmaterialen.

Ongewenste effecten van slak
Een slak kan gewenst zijn maar er kunnen ook fouten in de las terecht komen doordat er een slak wordt gevormd. Een slak of delen van de slak kunnen namelijk tijdens het lassen ingesloten worden in het smeltbad. Deze insluitingen behoren tot de lasfouten omdat de las op de plaatsen van de insluitingen niet solide is.

Een ander nadeel van de slak is dat deze verwijdert moet worden en dat is arbeidsintensief. De las moet worden nabewerkt met een beitel.

Wat wordt bedoelt met laskanten en laskantvoorbewerking?

Voordat een lasser een las gaat aanbrengen in een werkstuk zal de lasser zich eerst verdiepen in de constructietekening, de lasmethodebeschrijving (LMB) of de Welding Procedure Specification (WPS). Hierin vindt de lasser informatie over de manier waarop de las gelegd moet worden. Daarbij is onder andere aangegeven welke lasnaad gebruikt moet worden. Er zijn verschillende lasnaden, bijvoorbeeld de V-naad, de K-naad, de Y-naad en de X-naad. Ook kan er gebruik worden gemaakt van een zogenoemde stompe naad. Bij de laatste naad zal er niet of nauwelijks voorbewerking nodig zijn. De kanten die aan elkaar gelast moeten worden zullen dan slechts recht en schoon moeten zijn. Bij de overige naden zal ten minste één van de beide kanten van het werkstuk moeten worden voorbewerkt.

Wat is een laskant?
De kant van een werkstuk die gelast moet worden noemt men de zogenoemde laskant. Als men een werkstuk samenstelt heeft men echter verschillende laskanten die samengesteld moeten worden. Zo bevat een V-naad twee platen die beide zijn afgeschuind aan de laskant. De lasser zorgt er voor dat de twee laskanten van de platen zo dicht mogelijk tegen elkaar aan liggen alvorens de las wordt aangebracht. Hiervoor kan de lasser in sommige gevallen gebruik maken van een mal waarin de plaatdelen kunnen worden vastgezet. In andere gevallen zal de lasser creatiever te werk moeten gaan om de laskanten zo dicht mogelijk bij elkaar te brengen.

Hoe wordt een laskant gemaakt?
Een laskant is de kant van het werkstuk of werkstukonderdeel waarop de las moet worden aangebracht door de lasser. Deze kant moet schoon zijn zodat er geen vervuiling in het smeltbad van de las kan ontstaan. Daarnaast is de laskant in een bepaalde vorm. Meestal is er sprake van een zogenoemde afschuining zoals in het hiervoor genoemde voorbeeld van de V-naad. Er kan echter ook sprake zijn van bijvoorbeeld een K-naad of een X-naad. Ook hierbij wordt de laskant van één deel of twee delen van het werkstuk afgeschuind. Het afschuinen van een plaat kan op verschillende manieren gebeuren. De volgende manieren zijn gebruikelijk:

  • Het slijpen van de laskant
  • Frezen van de laskant
  • Snijden van de laskant met behulp van een plasmasnijder
  • Knabbelen van de laskant

Deze bovengenoemde technieken zijn in feite technieken om de laskant voor te bewerken. Daarom vallen deze technieken onder de laskantvoorbewerking. Meestal staat op een constructietekening een lassymbool waarmee wordt aangegeven welke lasnaad moet worden gemaakt. Als een las verkeerd is aangebracht kan men er voor kiezen om de las uit te slijpen of te gutsen. Dit is echter veel werk en de laskant zal daarna vaak hersteld moeten worden voordat de lasser een nieuwe las kan aanbrengen.

Voordelen van het aanbrengen van laskanten
Een bedrijf of een lasser heeft niet altijd de keuze om laskanten aan te brengen of niet. In veel gevallen zal in de lasmethodebeschrijving of de Welding Procedure Specification duidelijk zijn aangegeven hoe de lasnaad voorbewerkt dient te worden. Mocht men echter wel de keuze hebben om een laskant voor te bewerken dan is het belangrijk om de voordelen van laskantvoorbewerking goed voor ogen te houden. We noemen een aantal voordelen:

  • De lasverbinding wordt steviger omdat men de las, door het aanbrengen van bijvoorbeeld een V-naad, dieper aan kan brengen.
  • Daarnaast heeft het afschuinen van de laskant een voordeel dat het lasoppervlak groter wordt. Hierdoor kan het smeltbad goed worden gevormd en kan het lastoevoegmateriaal zich op meer plekken echten. Ook de warmte die bij het lasproces wordt ingebracht wordt meer verspreid.
  • Een goede laskantvoorbewerking zorgt er ook voor dat de laskant schoon is zodat er minder kans op vervuiling en insluiting ontstaat tijdens het lassen.

Wat wordt in de lastechniek bedoelt met backinggassen en onderlegstrips?

Een lasverbinding kan op verschillende manieren worden gemaakt. Er zijn bij het maken van een lasverbinding een aantal factoren van belang. Voordat men een bepaald lasproces kiest zal men eerst moeten nagaan welk materiaal gelast moet worden en wat de dikte van dat materiaal is. Het materiaal is meestal een metaalsoort (ferro  of non-ferro) en beschikt over bepaalde eigenschappen zoals sterkte en weerstand tegen oxidering. Deze eigenschappen zorgen er voor dat een bepaald lasproces juist wel of juist niet geschikt is voor het maken van een lasverbinding. Voorbeelden van lasprocessen zijn MIG/MAG, TIG, BMBE en autogeen lassen. Daarbij kan gebruik worden gemaakt van verschillende toevoegmaterialen die meestal in draadvorm worden aangebracht.

Voor lassen gebruikt men een gas. Dit kan een inert gas zijn of een actief gas. Een inert gas gaat geen of nauwelijks reactie aan met stoffen in de omgeving terwijl een actief gas dat wel doet. Bij MIG en TIG lassen wordt bijvoorbeeld gebruik gemaakt van een inert gas de letters ‘IG’ maken dat duidelijk. Dit inerte gas beschermd de las aan de voorkant waar de lasser met de lastoorts en het beschermgas last. De achterzijde van de las wordt tijdens het lasproces niet beschermd tenzij men gebruik maakt van zogenoemde backinggassen of onderlegstrips.

Wat is backinggas?
Backinggas is een beschermgas. Hiervoor kan bijvoorbeeld het inerte gas argon worden gebruikt maar dit gas is vrij prijzig. Daarom kiest men ook vaak voor zogenoemde formeergassen. Dit zijn mengsels die bestaat uit stikstof en waterstof. Het backinggas wordt aan de achterkant van het werkstuk aangebracht en zorgt er voor dat er geen ongewenste chemische reacties optreden tijdens het lasproces. Hierdoor kan het lasproces goed gecontroleerd en snel verlopen. Daarnaast zorgt het backinggas er voor dat het werkstuk wordt gekoeld en dient het backinggas ter ondersteuning van het smeltbad.

Wat zijn onderlegstrips?
In sommige gevallen maakt men gebruik van onderlegstrips als men gaat lassen. Deze onderlegstrips kunnen van verschillende materialen gemaakt zijn. Voorbeelden van materialen die worden gebruikt voor onderlegstrips zijn koper, staal of keramiek. Sommige lassers spreken wel over lassen op steentjes of op keramische strips.  Over het algemeen worden deze strips gebruikt bij grote lasverbindingen en lange brede lasnaden. Een onderlegstrip zorgt er voor dat het smeltbad niet te ver naar beneden wegzakt. De onderlegstrip houdt dit smeltbad namelijk tegen. Niet alle onderlegstrips kunnen na het lasproces makkelijk verwijdert worden. Keramische en koperen onderlegstrips kunnen meestal eenvoudig worden weggehaald maar stalen onderlegstrips gaan een verbinding aan met het smeltbad en kunnen daardoor na het uitharden van de las net meer worden verwijdert en vormen dus onderdeel van het werkstuk.

Wat zijn lassymbolen en waar worden deze voor gebruikt?

Een constructiebankwerker lasser krijgt meestal een tekening waarin is beschreven en weergegeven hoe het werkstuk er uit moet zien. Op de tekening staat de vorm van het werkstuk en staan daarnaast gegevens over de manier waarop de onderdelen van het werkstuk aan elkaar bevestigd moeten worden. Een voorbeeld van een manieren om onderdelen van een werkstuk aan elkaar te verbinden zijn lasverbindingen. Deze verbindingen komen tot stand door het basismateriaal van het werkstuk aan elkaar te smelten. Daarbij kan toevoegmateriaal worden gebruikt maar dat hoeft niet altijd. Een lasverbinding is een verbinding die niet uitneembaar is.

Dit houdt in dat een lasverbinding alleen doormiddel van geweld (gutsen, zagen slijpen) uit elkaar gehaald kan worden. Dit is één van de redenen waarom men extra zorgvuldig met het maken van een lasverbinding moet omgaan. Een constructiebankwerker lasser moet goed weten hoe een las moet worden gemaakt. Daarom staan op de werktekeningen die de constructiebankwerker moet gebruiken symbolen aangegeven. Dit zijn de zogenoemde lassymbolen.

Waarom een lassymbool?
Lassymbolen zijn nodig omdat kwalitatief goed laswerk van veel verschillende factoren afhankelijk is. Zo dient me rekening te houden met het soort metaal en de eventuele oxidehuid. Ook dient men rekening te houden met de vorm en de dikte van het materiaal. Daarnaast zijn er verschillende eisen met betrekking tot de hoogte van de las (de A-hoogte). De lassymbolen zorgen er voor dat de lasser de juiste instructie krijgt over het maken van de lasverbinding.

Waar staan lassymbolen?
De lassymbolen worden door een technisch tekenaar of constructeur op een constructietekening geplaatst. De constructeur of technisch tekenaar plaatst de lassymbolen niet zomaar op de tekening. Er is van te voren goed nagedacht over de lasverbinding. Daarbij is rekening gehouden met de normen die van toepassing zijn. Ook is er rekening gehouden met de verwachte belasting die op het werkstuk zal worden uitgeoefend. Daarvoor worden zogenoemde sterkteberekeningen toegepast. De eigenschappen van het materiaal en de dikte van het materiaal zijn eveneens van invloed op de keuze voor een bepaald lasproces. Daarom worden ook deze aspecten in de beoordeling meegenomen. Vaak worden deze gegevens ook in een lasmethodebeschrijving (LMB) benoemd of een zogenoemde Welding Procedure Specification (WPS). Dit zijn uitgebreide omschrijvingen over de lasmethode(s) die moeten worden toegepast bij het samenstellen en lassen van onderdelen van een werkstuk.

De lassymbolen zijn slechts korte aanduidingen die op de werktekeningen staan. Deze symbolen zijn bedoelt om informatie te verschaffen aan de lassen zodat deze de las op de juiste manier aanbrengt. Lassymbolen zorgen er dus voor dat de juistheid en de kwaliteit van de las gewaarborgd wordt.

Hoe worden lassymbolen aangegeven?
Lassymbolen worden met een pijl aangegeven op een constructietekening. Op deze pijl staat in ieder geval vier symbolen. Deze symbolen zijn het aanwijspunt van de pijl, het lassymbool, de referentie lijn en de maatinschrijving.

Lassymbool
Het lassymbool is een symbool dat belangrijk is voor de lasser. Met dit symbool wordt aangegeven welk type las er gemaakt moet worden door de lasser. Voorbeelden hiervan zijn bijvoorbeeld:

  • V-naad
  • ½ V-naad
  • I-naad
  • X-naad
  • Y-naad
  • ½ Y-naad
  • K-naad
  • Hoeklas
  • Dubbele hoeklas

Deze symbolen worden in een bepaalde vorm/ symbool ingetekend. De gebruikte symbolen zijn voor iedere lasser herkenbaar zodat elke lasser weet om wat voor lasnaad het gaat. Voor meer informatie over bijvoorbeeld het lasproces (bijvoorbeeld MIG/MAG, TIG, BMBE en autogeen) kan de lasser een lastechnicus in het bedrijf vragen stellen of de lasmethodebeschrijving / Welding Procedure Specification raadplegen indien deze aanwezig is.

Wat is een fillet weld en waar wordt deze toegepast?

Een ‘fillet weld’ is een Engelse aanduiding die meestal wordt vertaald met een hoeklas. Door de ASME wordt deze letter gehanteerd als aanduiding voor hoeklassen. Deze hoeklassen worden op een lascertificaat, lasmethodebeschrijving of welding procedure specification aangeduid met de letter ‘F’.

Wat is een hoeklas?
Men spreekt van een hoeklas als twee metalen vlakken loodrecht op elkaar worden verbonden doormiddel van een las. Hierbij kan ook sprake zijn van een zogenoemde T-verbinding. In dat geval worden meestal twee hoeklassen aangebracht. Dit dient zorgvuldig te gebeuren omdat een te grote warmte inbreng aan een bepaalde zijde van de T-verbinding er voor zorgt dat er aan de enen kant een scherpe hoek ontstaat en aan de andere kant juist een stompe hoek, kortom het materiaal trekt krom. Er zijn echter meerdere aandachtspunten waaraan gedacht moet worden voordat men een hoeklas gaat maken.

Aandachtspunten voor hoeklassen
Een las is een onuitneembare verbinding waarbij het basismateriaal doormiddel van een hoge temperatuur gesmolten wordt en er eventueel gebruik wordt gemaakt van toevoegmateriaal. Na uitharding van het zogenoemde smeltbad ontstaat een stevige verbinding. Als een hoeklas verkeerd wordt aangebracht zal deze met geweld uit elkaar moeten worden gehaald. Dit kan doormiddel van bijvoorbeeld gutsen, slijpen, zagen of slijpen. Dit vergt allemaal heel veel werk en daarnaast wordt het materiaal van het werkstuk meestal ernstig beschadigd. Daarom is het belangrijk dat een lasser een hoeklas op de juiste manier maakt met conform de welding procedure specification of de lasmethodebeschrijving.

Soorten hoeklassen
Er zijn verschillende soorten hoeklassen. Zo is er bijvoorbeeld ook een hoeklas uit de zij, deze wordt in het Engels aangeduid met side fillet welds. Bij hoeklassen heeft men het ook over binnenhoeklassen als de las aan de binnenzijde van de hoek wordt gelast. Een hoeklas kan ook worden gestapeld. Hierbij wordt een las in opgaande beweging omhoog aangebracht. Bij het maken van een hoeklas wordt naast de specifieke positie ook gekeken naar het lasproces zelf. Dit kan bijvoorbeeld MIG/Mag, TIG of met beklede elektrode (BMBE) lassen zijn.

Lastoevoegmateriaal
Verder is ook het toevoegmateriaal van belang. Dit toevoegmateriaal is gerelateerd aan het lasproces en het materiaal waaruit het werkstuk bestaat. Als met al deze factoren goed rekening wordt gehouden wordt een goede hoeklas of fillet weld gemaakt.

Welke insluitsels kunnen in lasfouten aanwezig zijn?

Tijdens het maken van een lasverbinding kunnen verschillende fouten ontstaan. Het maken van een goede lasverbinding is niet eenvoudig. Een lasverbinding wordt pas goed als aan verschillende factoren is voldaan. Zo moet het juiste lasproces worden toegepast, dit kan bijvoorbeeld autogeen, MIG/MAG, TIG en BMBE lassen zijn. Er zijn echter nog verschillende andere lasprocessen. Elk lasproces heeft zijn eigen unieke eigenschappen. Zo wordt er bij sommige lasprocessen inerte gassen gebruikt terwijl bij andere lasprocessen actieve gassen worden gebruikt. Lasprocessen zoals autogeen lassen wordt gedaan doormiddel van een vlam terwijl MIG/MAG lassen doormiddel van een elektrische boog wordt gedaan. De vlam of de elektrische boog zorgt er voor dat er veel hitte ontstaat zodat het basismateriaal van het werkstuk smelt en het lastoevoegmatiaal ook.

Metaalinsluitselsin het smeltbad
Zowel het basismateriaal als het toevoegmateriaal versmelten samen in een smeltbad. Na uitharding van het smeltbad ontstaat een stevige verbinding. Door verkeerde invloeden kan het smeltbad echter niet goed gevormd worden of ontstaan er problemen bij het stollen. Dit kan leiden tot scheuren en andere problemen. Fouten die ontstaan tijdens het lassen worden ook wel lasfouten genoemd. Naast scheuren kunnen onder andere ook insluitsels voor problemen zorgen als deze ontstaan tijdens het lasproces. Hieronder zijn een aantal voorbeelden genoemd van soorten insluitsels die kunnen ontstaan tijdens het lassen in het smeltbad.

Slakinsluitsels
Soms worden meerdere lassen over elkaar heen aangebracht. Bij sommige lassen zoals BMBE lassen ontstaat een slak op de las. Deze las dient na afloop van het lassen goed te worden verwijdert. Dit doet men door de slak los te bikken. Als men de las niet goed wegbikt kunnen delen van de slak in de nieuwe laslaag worden ingesloten. Deze insluitingen worden ook wel slakinsluitsels genoemd. Slakinsluitsels kunnen ook ontstaan wanneer de lasser op een verkeerde manier last.

Poederinsluitsels
Bij sommige lasprocessen wordt gebruik gemaakt van laspoeders.  Dit wordt onder andere gedaan bij onder poederdek lassen, dit lasproces wordt ook wel OP-lassen genoemd. Ook bij elektroslaklassen wordt gebruik gemaakt van laspoeders. Poederinsluitsels kunnen tijdens deze lasprocessen worden veroorzaakt als een veel te grote hoeveelheid laspoeder op de lasboog wordt gestrooid. Meestal wordt bij OP-lassen een teveel aan laspoeder opgezogen of door de OP-lasser verwijdert. Als dit niet gebeurd kan een nieuwe las die over de vorige las heen wordt aangebracht vervuild raken met poederinsluitsels. Daarom moet een lasnaad altijd goed schoon worden gemaakt als men meerdere lassen over elkaar heen aanbrengt.

Metaalinsluitsels
Het smeltbad moet tijdens het lasproces goed in de gaten worden gehouden door de lasser. De lasser dient tijdens de voorbewerking op het lassen een schone lasnaad te maken zodat het smeltbad niet vervuild kan worden. Tijdens het lassen kan het smeltbad vervuild raken met andere metalen dan het metaal dat wordt gebruikt als toevoegmateriaal en het metaal van het werkstuk. Metalen die niet goed meesmelten in het smeltbad kunnen ingesloten worden. Hierdoor ontstaan metaalinsluitsels. Deze insluitsels kunnen bijvoorbeeld koper bevatten van de koperen smeltbadondersteuning of wolfraam door het afbreken van de TIG-laselektrode.

Waarom zijn insluitsels lasfouten?
Insluitsels veranderen de structuur van de las. De las wordt op de plek van een insluitsel minder dicht en daardoor bestaat de kans op een scheur in de las als de las onder druk komt te staan. Insluitsels zijn lasfouten die de mechanische stevigheid van de las benadelen. Voor bepaalde constructies en werkstukken zijn insluitsels niet erg. Dit is bijvoorbeeld het geval bij constructies die niet zwaar belast worden of voor de sier worden gemaakt. Bij dragende constructies of constructiedelen moeten de lassen echter van perfecte kwaliteit zijn. Insluitsels mogen hierbij niet voorkomen. Daarom worden deze lassen over het algemeen gekeurd onder strenge normen. Deze gecertificeerde lassen worden regelmatig destructief of niet-destructief (NDO) gekeurd. De manier waarop een las gekeurd moet worden staat in de lasmethodebeschrijving.

Welke soorten scheuren kunnen ontstaan tijdens lasprocessen?

Een lasverbinding is een verbinding die permanent is. Verbindingen die doormiddel van een las tot stand worden gebracht kunnen niet eenvoudig uitelkaar worden gehaald. Doormiddel van lassen worden twee materialen in elkaar versmolten eventueel met behulp van toevoegmateriaal. Het versmelten van de materialen gebeurd doorgaans onder een hoge temperatuur. Deze temperatuur wordt doormiddel van een vlam of een elektrische lasboog op het gewenste niveau gebracht. Aan elke lasverbinding worden eisen gesteld. Bij sommige lasverbindingen zijn de eisen niet heel hoog. Dit is bijvoorbeeld het geval bij constructies die niet zwaar belast worden. Er zijn echter ook constructie die zeer zwaar belast worden bijvoorbeeld kranen in de offshore. Hiervoor zijn zeer zware eisen opgesteld.

Lasmethodebeschrijving of Welding Procedure Specification
De eisen waaraan een lasverbinding moet voldoen staan in een lasmethodebeschrijving LMB of Welding Procedure Specification WPS. Deze beschrijvingen zijn geënt op de lasmethodekwalificatie van het desbetreffende bedrijf. In de LMB of het WPs staat duidelijk beschreven aan welke lasprocedure de lasser zich moet houden bij het maken van de las. Hierbij is aandacht voor de voorbewerking, het daadwerkelijke lassen en de nabewerking.

De voorbewerking voor het lasproces
De voorbewerking is van groot belang omdat sommige metaalsoorten voorverwarmd moeten worden in verband met het optreden van scheuren tijdens en na het lassen. Ook het snijden of slijpen van lasnaden is een belangrijk aspect van de voorbewerking. Daarnaast dient de lasnaad goed schoongemaakt te worden en dient de lasser er alles aan te doen om een goed ‘lasklimaat’ te creëren. Dit houdt in dat de lasser bij bepaalde lasprocessen moet voorkomen dat er tocht, vocht of vuil bij het smeltbad kan komen.

Het lassen
De lasser dient de lasmethode toe te passen die is voorgeschreven in de LMB of WPS. Dit kan bijvoorbeeld MIG/MAG, TIG, OP-lassen of  BMBE lassen zijn. Er zijn echter nog vele andere lasprocessen die in de praktijk worden gebruikt. Daarbij moet ook rekening worden gehouden met de juiste (bescherm)gassen en de toevoegmaterialen. Verder dient de lasser ook rekening te houden met de laspositie, de A-hoogte en het aantal lagen waarin gelast moet worden.

De nabewerking
Ook de nabewerking heeft een invloed op de kwaliteit van de las. Sommige lassen moeten zorgvuldig worden afgekoeld. Dit moet niet te snel gebeuren in verband met het ontstaan van scheuren. Daarnaast kunnen er bij bepaalde lasprocessen lasspetters ontstaan die verwijdert moeten worden. Dit is bijvoorbeeld het geval bij MIG/MAG lasprocessen. Bij sommige andere lasprocessen zoals BMBE lassen kan een ‘slak’ ontstaan op de las. Deze ‘slak’ dient zorgvuldig verwijdert te worden. Het verwijderen van de ‘slak’ is al helemaal belangrijk wanneer er nog een las over de bestaande las heen wordt aangebracht.

Lasfouten
Tijdens het lassen kunnen echter fouten ontstaan. Deze fouten worden ook wel lasfouten genoemd en kunnen zowel in de voorbewerking, tijdens het lassen en in de nabewerking ontstaan. Lasfouten kunnen ernstige gevolgen hebben voor de mechanische stevigheid van een constructie. Er zijn verschillende lasfouten die kunnen ontstaan. Voorbeelden hiervan zijn kraters, insluitingen, randinkarteling en scheuren.

Scheurvorming tijdens het lassen
Tijdens het lassen kunnen scheuren ontstaan. Deze scheuren ontstaan waar het materiaal uit elkaar wordt getrokken. Dit uit elkaar rekken en trekken van materiaal kan onder andere gebeuren door temperatuurswisselingen. Een scheur in een lasverbinding zorgt er voor dat de kwaliteit van de las wordt aangetast. Dit is afhankelijk van de omvang van de scheur, de dikte van het materiaal en de druk die wordt uitgeoefend op de constructie. Scheuren kunnen soms worden gerepareerd door de scheur mechanisch te verwijderen doormiddel van slijpen of gutsen. Daarna dient men een nieuwe lasnaad aan te brengen en deze zorgvuldig dicht te lassen conform de lasmethodebeschrijving of Welding Procedure Specification.

Er zijn verschillende soorten scheuren die kunnen ontstaan tijdens het lassen. De oorzaken van de scheuren zijn eveneens verschillend. Hieronder worden in een aantal alinea’s voorbeelden gegeven van soorten scheuren die kunnen ontstaat tijdens en na het lasproces.

Stollingsscheuren
Een soort scheuren die kunnen ontstaan tijden het lasproces zijn zogenoemde stollingsscheuren. Deze scheuren worden ook wel h/b scheuren genoemd. Hierbij staan de letters ‘h/b’  voor ‘hoogte’ en ‘breedte’ waarmee de verhoudingen tussen de hoogte en de breedte worden bedoelt. Deze stollingsscheuren ontstaan wanneer de hoogte van de las groter is dan de breedte van de las. Tijdens het stollen van de las kan een scheur ontstaan doordat de las langzaam van buiten naar binnen stolt. Als de las hoog is zal daardoor een groot temperatuurverschil kunnen ontstaan tussen de buitenkant van de las en de binnenkant van de las. Als er in een las verontreinigingen aanwezig zijn met een lager smeltpunt dan het lasmateriaal kunnen deze verontreinigingen naar binnen worden getrokken. Als er meerdere verontreinigingen bij elkaar in de buurt zitten kan deze plek tijdens het stollingsproces voor problemen zorgen. Door de krimpspanning of door een belasting van de constructie kan een scheur bij de verontreinigingen ontstaan. Deze scheur is echter niet altijd direct zichtbaar aan de buitenkant. De scheur kan door röntgenonderzoek worden ontdekt. Röntgenonderzoek is een variant van niet- destructief onderzoek NDO.

Waterstofscheuren
Bij harde metaallegeringen kunnen waterstofscheuren optreden. Deze scheuren ontstaan wanneer er tijdens het lassen veel waterstof in de las wordt opgenomen. De waterstofscheuren ontstaan onder andere door trekspanningen. De scheuren hoeven niet meteen te ontstaan tijdens het lassen en kunnen zelfs 48 na het afronden van het lasproces gevormd worden. Hoe waterstofscheuren precies ontstaan is nog niet helemaal bekend. Men vermoed dat waterstof diffundeert naar insluitsels en poriën en dat daar waterstofgas wordt gevormd. Dit waterstofgas zou voor grote druk zorgen waardoor materiaal uit elkaar wordt gedrukt. Waterstofscheuren kunnen worden voorkomen door lastoevoegmateriaal met weinig waterstof te gebruiken. Daarnaast dient de lasser tijdens de voorbewerking de lasnaad goed schoon te maken. in de nabewerking moet de lasser het materiaal of werkstuk nagloeien. Deze aspecten van het lasproces staan meestal in de lasmethodebeschrijving / Welding Procedure Specification.


Door warmtebehandeling kunnen spanningsvrijgloeischeuren ontstaan. Deze scheuren worden ook wel intergranulaire scheuren genoemd. Door deze scheuren ontstaat carbide-precipitatie. Het inwendige van de aanwezige korrels wordt door dit proces versterkt. Daarnaast segregeren onzuiverheden zoals S, P, Sn, As naar de grenzen van de korrel, hierdoor worden deze verzwakt. Langs de grenzen van de korrel treed de meeste vervorming op. Door deze vervorming kunnen scheuren ontstaan.

Lamellaire scheuren
Als in het lasmetaal niet-metallische insluitsels aanwezig zijn kunnen lamellaire scheuren ontstaan. Deze scheuren worden gevormd in de fabriek waar het metaal wordt vervaardigd. Tijdens het gieten van metaal in een vorm kan verontreiniging in het metaal terecht komen. Deze verontreiniging kan bijvoorbeeld een deel van de ‘slak’ zijn die bij het smeltproces van ijzer en ijzererts op het gesmolten staal drijft. Als de lasser een lasverbinding maakt op de hoogte van de verontreiniging in het metaal zal de verontreiniging door de uitwerking van de krimpspanning gaan splijten en inscheuren. Tegenwoordig wordt staal meestal vervaardigd met een continu-gietproces. Hierdoor wordt de kans op verontreinigingen beperkt en komen lamellaire scheuren bijna niet meer voor.