Wat is de keelhoogte van lasverbindingen?

Keelhoogte is de hoogte van de lasverbindingen waarbij men kijkt naar het gedeelte van de lasverbinding die boven het plaatmateriaal uitsteekt, kortom de dikte van de lasnaad. De keelhoogte van een lasverbinding wordt ook wel de a-hoogte genoemd en wordt op een tekening vaak met de letter ‘a’ aangegeven. De keelhoogte is een belangrijke maataanduiding voor een lasser. Wanneer een lasser bijvoorbeeld een te kleine keelhoogte hanteert zal de lasverbinding mogelijk niet sterk genoeg zijn. De inbranding of penetratie van het smeltbad van de lasverbinding zijn hierbij echter ook belangrijke factoren. Als de keelhoogte van de lasverbinding veel te hoog is heeft dit meestal gevolgen voor het materiaal dat door de warmte-inbreng kan vervormen. Een lasser moet daarom de juiste keelhoogte hanteren deze informatie vindt de lasser in de lasmethodebeschrijving (LMB) of de Welding Procedure Specification (WPS).

Lasmethodebeschrijving en Welding Procedure Specification
Het maken van een lasverbinding is precies werk. Een lasverbinding is een verbinding die niet-uitneembaar is. Dat houdt in dat een lasverbinding alleen met geweld uit elkaar gehaald kan worden doormiddel van zagen, knippen, slijpen, gutsen of breken. Dit zijn zeer destructieve methoden daarom is een goede voorbereiding op het lassen van groot belang. Gelukkig hoeft een lasser in de praktijk meestal niet zelf alle informatie te verzamelen voor het maken van de juiste lasverbinding.

Meestal wordt bij het werkstuk een lasmethodebeschrijving (LMB) of een Welding Procedure Specification (WPS) geleverd. Daarin staat het lastoevoegmateriaal, de lasmethode, de laspositie en nog meer relevante informatie voor het maken van de lasverbinding. Ook de keelhoogte of a-hoogte wordt in deze documenten aangegeven. De maataanduiding voor de hoogte van de lasverbinding staat meestal ook op de tekening van het werkstuk doormiddel van de letter ‘a’. Na de letter ‘a’ volgt een maataanduiding in millimeters. De letter ‘s’ kan ook worden aangegeven.

Deze letter ‘s’ staat voor de nominale keelhoogte inclusief inbranding en valt net als de aanduiding voor de keelhoogte onder de ISO 2553 / EN 22553 richtlijnen. Met de inbranding wordt de diepte van het smeltbad van het lasproces bedoelt. Dit is de hoeveelheid van het uitgangsmateriaal dat gesmolten wordt tijdens het lassen. Daar komt de keelhoogte nog bovenop om tot de hoogte te komen die met de letter ‘s’ wordt aangeduid.

Indien er onvoldoende documentatie of informatie wordt gegeven over de lasverbinding die gemaakt moet worden dan zal de lasser zich kunnen wenden tot een lasspecialist. Dit kan een European Welding Technologist,  een International Welding Technologist of een Middelbaar lastechnicus zijn. In de volgende alinea wordt hier iets dieper op ingegaan.

Middelbaar Lastechnicus
Niet alle bedrijven hebben een lastechnicus in dienst maar de bedrijven die een dergelijke specialist in dienst hebben zijn wel in het voordeel als het gaat om specifieke kennis over lasprocessen en lasmethoden. Voor lassers is een middelbaar lastechnicus een belangrijke informatiebron als er onduidelijkheden zijn over de lasverbinding die gemaakt moet worden. Ook een International Welding Technologist of een European Welding Technologist zijn specialisten als het gaat om lasverbindingen. Wanneer deze personen echter niet aanwezig zijn en de lasverbinding niet onder certificaat of lasmethodekwalificatie gemaakt hoeft te worden dan kan de lasser bij het bepalen van de keelhoogte of a-hoogte ook een aantal vuistregels hanteren.


Vuistregels keelhoogte lasverbindingen
Vuistregels moeten alleen gebruikt worden als er geen Lasmethodebeschrijving, geen Welding Procedure Specification, geen tekening en geen aanspreekpunt aanwezig is in de vorm van een lastechnicus of voorman aanwezig is. Ook moet er sprake zijn van lasverbindingen die niet onder een lasmethodekwalificatie vallen. Pas als al deze zaken niet aanwezig zijn kan een lasser met vuistregels de keelhoogte of a-hoogte van de lasverbinding bepalen. Er zijn verschillende vuistregels die hiervoor worden gebruikt. Deze vuistregels gaan allemaal uit van de plaatdikte van het materiaal dat gelast moet worden. Een bekende vuistregels is dat de keelhoogte 0,7 maal de minimale plaatdikte moet wezen. Weer een andere vuistregels is dat de keelhoogte gelijk is aan 0,6 keer de minimale plaatdikte. Daarbij wordt uitgegaan van een volledig rondom gelast product dus niet een buis voor de helft aflassen. Er zijn echter ook andere vuistregels voor het bepalen van de keelhoogte zoals de regel dat de keelhoogte gelijk is aan de helft van de plaatdikte plus 1 millimeter.

Kanttekening bij vuistregels voor de keelhoogte
Vuistregels moeten alleen worden toegepast als verdere informatie ontbreekt en als de lasverbinding niet op certificaat of certificaatniveau gemaakt hoeft te worden. Daarnaast is er nog een belangrijke andere kanttekening namelijk de dikte van de plaat. Bij hele dikke plaatsen zijn de vuistregels niet meer effectief of kunnen ze zelfs zorgen voor een problematische lasverbinding. Immers een hele dikke plaat zou ook een grote keelhoogte van de lasverbinding tot gevolg hebben. Daardoor kan een enorme dikke laag op de lasnaad worden aangebracht wat voor scheuren en andere beschadigingen aan het werkstuk kan zorgen. Meestal moet in die gevallen de las dieper worden aangebracht door een goed smeltbad aan te brengen. Dit kan echter ook voor scheuren zorgen en vereist dat dikke platen worden voorgegloeid tot een bepaalde temperatuur zodat de temperatuur rondom het smeltbad en de temperatuur van de rest van het (plaat) materiaal niet teveel verschilt. Juist het verschil in temperatuur in één plaat kan voor grote krimp en rek scheuren zorgen. Voor het lassen van dikke plaat worden daarom in de praktijk vrijwel altijd een WPS en/of LMB gehanteerd.

Wat is de A-hoogte bij lassen?

A-hoogte is de hoogte oftewel de dikte van een las deze is meestal vastgelegd op een tekening, lasmethodebeschrijving (LMB) of Welding Procedure Specification (WPS). De A-hoogte is belangrijke informatie voor een lasser. Als de A-hoogte van een las bijvoorbeeld te laag is dan kan de lasverbinding niet sterk genoeg zijn. Een te grote A-hoogte kan echter voor andere problemen zorgen. Zo kan een te grote A-hoogte er voor zorgen dat er teveel warmte in de lasverbinding wordt gebracht waardoor het werkstuk kan vervormen of scheuren. Daarom is het belangrijk dat een lasser zorgvuldig te werk gaat bij het bepalen van de A-hoogte en het maken van een lasverbinding. Hieronder is in een paar alinea’s informatie gegeven rondom de A-hoogte voor lasverbindingen.

A-hoogte of keelhoogte bij lasverbindingen
De informatie in de inleiding maakt duidelijk wat onder een A-hoogte wordt verstaan. In de praktijk wordt in de lastechniek echter ook gesproken over een keelhoogte. In feite wordt hiermee hetzelfde bedoelt als de A-hoogte. Meestal heeft men het dan over een keelhoogte met penetratiediepte. De keelhoogte wordt met een letter ‘a’ aangegeven en de keelhoogte met penetratiediepte wordt aangegeven met de letter ‘s’. De letter ‘s’ is dus de A-hoogte inclusief de penetratiediepte van de las. Dit is dus de totale hoogte van de lasverbinding. Tijdens het lassen ontstaat namelijk een smeltbad waardoor de las een deel van het plaatwerk tot smelten brengt dit wordt ook wel de penetratie van de lasverbinding genoemd. De A-hoogte of keelhoogte komt nog bovenop deze penetratiediepte waardoor de maataanduiding ‘keelhoogte met penetratiediepte’ ontstaat oftewel de maataanduiding die wordt aangegeven met de letter ‘s’.

Informatie over A-hoogte voor lasverbindingen
Voor het bepalen van de juiste A-hoogte zal een lasser in eerste instantie altijd de lasmethodebeschrijving (LMB) of de Welding Procedure Specification (WPS) moeten raadplegen. Indien deze er niet is kan de lasser de tekening nalezen. Op de tekening wordt meestal ook een A-hoogte bij de te maken lasverbinding benoemd. Verder is een middelbaar lastechnicus (MLT-ER) ook een belangrijke informatiebron op het gebied van lassen. De middelbaar lastechnicus heeft een specifieke opleiding gevolgd voor lasverbindingen en is bevoegd om de eerder genoemde lasmethodebeschrijving op te stellen. Daarom kan deze lastechnicus een duidelijk en bindend advies geven over de lasverbindingen en dus ook de gewenste A-hoogte van deze verbindingen. In plaats van de benaming ‘middelbaar lastechnicus’ gebruiken sommige bedrijven de benaming ‘European Welding Technologist’ of ‘International Welding Technologist’.

Deze functies worden ook wel afgekort met EWT en IWT. In het vakjargon spreekt men ook wel over ene MLT-er, een EWT-er en een IWT-er. Welke benaming een bedrijf ook gebruikt voor en lastechnicus het feit blijft bestaan dat dit specialisten zijn waar lassers advies kunnen inwinnen over de te maken lasverbinding. Sommige bedrijven hebben echter geen lasmethodebeschrijvingen en maken geen gebruik van Welding Procedure Specifications omdat de lasverbindingen aan minder strenge eisen moeten voldoen. In dat geval kan een lasser gebruik maken van zogenaamde vuistregels om de A-hoogte van de lasverbindingen te bepalen. In de volgende alinea worden een aantal vuistregels genoemd voor het bepalen van de A-hoogte. Het is belangrijk te weten dat de vuistregels die genoemd worden ondergeschikt zijn aan de informatie die in een WPS of LMB staan met betrekking tot de hoogte van een lasverbinding.

Vuistregels voor bepalen A-hoogte
Er zijn verschillende vuistregels voor het bepalen van de A-hoogte. Zo is een algemene vuistregel dat de A-hoogte 0,7 x de dunste plaatdikte moet zijn. Weer anderen hanteren de vuistregel dat de A-hoogte gelijk is aan 0,6 maal de minimale plaatdikte. Daarbij moet de las geheel rondom worden gelast. Er is ook een vuistregel dat de A-hoogte gelijk moet zijn aan de halve plaatdikte plus 1 mm.

Kanttekening bij vuistregels voor A-hoogte
De bovenstaande vuistregels voor het bepalen van de A-hoogte voor een lasverbinding kunnen in de praktijk worden gehanteerd tot middeldikke plaat wanneer deze vuistregels uiteraard niet in strijd zijn met de informatie die is benoemd in de lasmethodebeschrijving en de Welding Procedure Specification. Wanneer een laser echter dikke plaat gaat lasser zal hij of zij er achter komen dat met deze vuistregels veel te dikke lasverbindingen worden gemaakt met alle gevolgen voor het werkstuk van dien. Daarom moet men bij het lassen van dikke plaat altijd een ervaren specialist inschakelen voor het bepalen van de A-hoogte. Dit is belangrijk om scheuren, vervorming en andere ongewenste aspecten te voorkomen.

Welke insluitsels kunnen in lasfouten aanwezig zijn?

Tijdens het maken van een lasverbinding kunnen verschillende fouten ontstaan. Het maken van een goede lasverbinding is niet eenvoudig. Een lasverbinding wordt pas goed als aan verschillende factoren is voldaan. Zo moet het juiste lasproces worden toegepast, dit kan bijvoorbeeld autogeen, MIG/MAG, TIG en BMBE lassen zijn. Er zijn echter nog verschillende andere lasprocessen. Elk lasproces heeft zijn eigen unieke eigenschappen. Zo wordt er bij sommige lasprocessen inerte gassen gebruikt terwijl bij andere lasprocessen actieve gassen worden gebruikt. Lasprocessen zoals autogeen lassen wordt gedaan doormiddel van een vlam terwijl MIG/MAG lassen doormiddel van een elektrische boog wordt gedaan. De vlam of de elektrische boog zorgt er voor dat er veel hitte ontstaat zodat het basismateriaal van het werkstuk smelt en het lastoevoegmatiaal ook.

Metaalinsluitselsin het smeltbad
Zowel het basismateriaal als het toevoegmateriaal versmelten samen in een smeltbad. Na uitharding van het smeltbad ontstaat een stevige verbinding. Door verkeerde invloeden kan het smeltbad echter niet goed gevormd worden of ontstaan er problemen bij het stollen. Dit kan leiden tot scheuren en andere problemen. Fouten die ontstaan tijdens het lassen worden ook wel lasfouten genoemd. Naast scheuren kunnen onder andere ook insluitsels voor problemen zorgen als deze ontstaan tijdens het lasproces. Hieronder zijn een aantal voorbeelden genoemd van soorten insluitsels die kunnen ontstaan tijdens het lassen in het smeltbad.

Slakinsluitsels
Soms worden meerdere lassen over elkaar heen aangebracht. Bij sommige lassen zoals BMBE lassen ontstaat een slak op de las. Deze las dient na afloop van het lassen goed te worden verwijdert. Dit doet men door de slak los te bikken. Als men de las niet goed wegbikt kunnen delen van de slak in de nieuwe laslaag worden ingesloten. Deze insluitingen worden ook wel slakinsluitsels genoemd. Slakinsluitsels kunnen ook ontstaan wanneer de lasser op een verkeerde manier last.

Poederinsluitsels
Bij sommige lasprocessen wordt gebruik gemaakt van laspoeders.  Dit wordt onder andere gedaan bij onder poederdek lassen, dit lasproces wordt ook wel OP-lassen genoemd. Ook bij elektroslaklassen wordt gebruik gemaakt van laspoeders. Poederinsluitsels kunnen tijdens deze lasprocessen worden veroorzaakt als een veel te grote hoeveelheid laspoeder op de lasboog wordt gestrooid. Meestal wordt bij OP-lassen een teveel aan laspoeder opgezogen of door de OP-lasser verwijdert. Als dit niet gebeurd kan een nieuwe las die over de vorige las heen wordt aangebracht vervuild raken met poederinsluitsels. Daarom moet een lasnaad altijd goed schoon worden gemaakt als men meerdere lassen over elkaar heen aanbrengt.

Metaalinsluitsels
Het smeltbad moet tijdens het lasproces goed in de gaten worden gehouden door de lasser. De lasser dient tijdens de voorbewerking op het lassen een schone lasnaad te maken zodat het smeltbad niet vervuild kan worden. Tijdens het lassen kan het smeltbad vervuild raken met andere metalen dan het metaal dat wordt gebruikt als toevoegmateriaal en het metaal van het werkstuk. Metalen die niet goed meesmelten in het smeltbad kunnen ingesloten worden. Hierdoor ontstaan metaalinsluitsels. Deze insluitsels kunnen bijvoorbeeld koper bevatten van de koperen smeltbadondersteuning of wolfraam door het afbreken van de TIG-laselektrode.

Waarom zijn insluitsels lasfouten?
Insluitsels veranderen de structuur van de las. De las wordt op de plek van een insluitsel minder dicht en daardoor bestaat de kans op een scheur in de las als de las onder druk komt te staan. Insluitsels zijn lasfouten die de mechanische stevigheid van de las benadelen. Voor bepaalde constructies en werkstukken zijn insluitsels niet erg. Dit is bijvoorbeeld het geval bij constructies die niet zwaar belast worden of voor de sier worden gemaakt. Bij dragende constructies of constructiedelen moeten de lassen echter van perfecte kwaliteit zijn. Insluitsels mogen hierbij niet voorkomen. Daarom worden deze lassen over het algemeen gekeurd onder strenge normen. Deze gecertificeerde lassen worden regelmatig destructief of niet-destructief (NDO) gekeurd. De manier waarop een las gekeurd moet worden staat in de lasmethodebeschrijving.

Welke soorten scheuren kunnen ontstaan tijdens lasprocessen?

Een lasverbinding is een verbinding die permanent is. Verbindingen die doormiddel van een las tot stand worden gebracht kunnen niet eenvoudig uitelkaar worden gehaald. Doormiddel van lassen worden twee materialen in elkaar versmolten eventueel met behulp van toevoegmateriaal. Het versmelten van de materialen gebeurd doorgaans onder een hoge temperatuur. Deze temperatuur wordt doormiddel van een vlam of een elektrische lasboog op het gewenste niveau gebracht. Aan elke lasverbinding worden eisen gesteld. Bij sommige lasverbindingen zijn de eisen niet heel hoog. Dit is bijvoorbeeld het geval bij constructies die niet zwaar belast worden. Er zijn echter ook constructie die zeer zwaar belast worden bijvoorbeeld kranen in de offshore. Hiervoor zijn zeer zware eisen opgesteld.

Lasmethodebeschrijving of Welding Procedure Specification
De eisen waaraan een lasverbinding moet voldoen staan in een lasmethodebeschrijving LMB of Welding Procedure Specification WPS. Deze beschrijvingen zijn geënt op de lasmethodekwalificatie van het desbetreffende bedrijf. In de LMB of het WPs staat duidelijk beschreven aan welke lasprocedure de lasser zich moet houden bij het maken van de las. Hierbij is aandacht voor de voorbewerking, het daadwerkelijke lassen en de nabewerking.

De voorbewerking voor het lasproces
De voorbewerking is van groot belang omdat sommige metaalsoorten voorverwarmd moeten worden in verband met het optreden van scheuren tijdens en na het lassen. Ook het snijden of slijpen van lasnaden is een belangrijk aspect van de voorbewerking. Daarnaast dient de lasnaad goed schoongemaakt te worden en dient de lasser er alles aan te doen om een goed ‘lasklimaat’ te creëren. Dit houdt in dat de lasser bij bepaalde lasprocessen moet voorkomen dat er tocht, vocht of vuil bij het smeltbad kan komen.

Het lassen
De lasser dient de lasmethode toe te passen die is voorgeschreven in de LMB of WPS. Dit kan bijvoorbeeld MIG/MAG, TIG, OP-lassen of  BMBE lassen zijn. Er zijn echter nog vele andere lasprocessen die in de praktijk worden gebruikt. Daarbij moet ook rekening worden gehouden met de juiste (bescherm)gassen en de toevoegmaterialen. Verder dient de lasser ook rekening te houden met de laspositie, de A-hoogte en het aantal lagen waarin gelast moet worden.

De nabewerking
Ook de nabewerking heeft een invloed op de kwaliteit van de las. Sommige lassen moeten zorgvuldig worden afgekoeld. Dit moet niet te snel gebeuren in verband met het ontstaan van scheuren. Daarnaast kunnen er bij bepaalde lasprocessen lasspetters ontstaan die verwijdert moeten worden. Dit is bijvoorbeeld het geval bij MIG/MAG lasprocessen. Bij sommige andere lasprocessen zoals BMBE lassen kan een ‘slak’ ontstaan op de las. Deze ‘slak’ dient zorgvuldig verwijdert te worden. Het verwijderen van de ‘slak’ is al helemaal belangrijk wanneer er nog een las over de bestaande las heen wordt aangebracht.

Lasfouten
Tijdens het lassen kunnen echter fouten ontstaan. Deze fouten worden ook wel lasfouten genoemd en kunnen zowel in de voorbewerking, tijdens het lassen en in de nabewerking ontstaan. Lasfouten kunnen ernstige gevolgen hebben voor de mechanische stevigheid van een constructie. Er zijn verschillende lasfouten die kunnen ontstaan. Voorbeelden hiervan zijn kraters, insluitingen, randinkarteling en scheuren.

Scheurvorming tijdens het lassen
Tijdens het lassen kunnen scheuren ontstaan. Deze scheuren ontstaan waar het materiaal uit elkaar wordt getrokken. Dit uit elkaar rekken en trekken van materiaal kan onder andere gebeuren door temperatuurswisselingen. Een scheur in een lasverbinding zorgt er voor dat de kwaliteit van de las wordt aangetast. Dit is afhankelijk van de omvang van de scheur, de dikte van het materiaal en de druk die wordt uitgeoefend op de constructie. Scheuren kunnen soms worden gerepareerd door de scheur mechanisch te verwijderen doormiddel van slijpen of gutsen. Daarna dient men een nieuwe lasnaad aan te brengen en deze zorgvuldig dicht te lassen conform de lasmethodebeschrijving of Welding Procedure Specification.

Er zijn verschillende soorten scheuren die kunnen ontstaan tijdens het lassen. De oorzaken van de scheuren zijn eveneens verschillend. Hieronder worden in een aantal alinea’s voorbeelden gegeven van soorten scheuren die kunnen ontstaat tijdens en na het lasproces.

Stollingsscheuren
Een soort scheuren die kunnen ontstaan tijden het lasproces zijn zogenoemde stollingsscheuren. Deze scheuren worden ook wel h/b scheuren genoemd. Hierbij staan de letters ‘h/b’  voor ‘hoogte’ en ‘breedte’ waarmee de verhoudingen tussen de hoogte en de breedte worden bedoelt. Deze stollingsscheuren ontstaan wanneer de hoogte van de las groter is dan de breedte van de las. Tijdens het stollen van de las kan een scheur ontstaan doordat de las langzaam van buiten naar binnen stolt. Als de las hoog is zal daardoor een groot temperatuurverschil kunnen ontstaan tussen de buitenkant van de las en de binnenkant van de las. Als er in een las verontreinigingen aanwezig zijn met een lager smeltpunt dan het lasmateriaal kunnen deze verontreinigingen naar binnen worden getrokken. Als er meerdere verontreinigingen bij elkaar in de buurt zitten kan deze plek tijdens het stollingsproces voor problemen zorgen. Door de krimpspanning of door een belasting van de constructie kan een scheur bij de verontreinigingen ontstaan. Deze scheur is echter niet altijd direct zichtbaar aan de buitenkant. De scheur kan door röntgenonderzoek worden ontdekt. Röntgenonderzoek is een variant van niet- destructief onderzoek NDO.

Waterstofscheuren
Bij harde metaallegeringen kunnen waterstofscheuren optreden. Deze scheuren ontstaan wanneer er tijdens het lassen veel waterstof in de las wordt opgenomen. De waterstofscheuren ontstaan onder andere door trekspanningen. De scheuren hoeven niet meteen te ontstaan tijdens het lassen en kunnen zelfs 48 na het afronden van het lasproces gevormd worden. Hoe waterstofscheuren precies ontstaan is nog niet helemaal bekend. Men vermoed dat waterstof diffundeert naar insluitsels en poriën en dat daar waterstofgas wordt gevormd. Dit waterstofgas zou voor grote druk zorgen waardoor materiaal uit elkaar wordt gedrukt. Waterstofscheuren kunnen worden voorkomen door lastoevoegmateriaal met weinig waterstof te gebruiken. Daarnaast dient de lasser tijdens de voorbewerking de lasnaad goed schoon te maken. in de nabewerking moet de lasser het materiaal of werkstuk nagloeien. Deze aspecten van het lasproces staan meestal in de lasmethodebeschrijving / Welding Procedure Specification.


Door warmtebehandeling kunnen spanningsvrijgloeischeuren ontstaan. Deze scheuren worden ook wel intergranulaire scheuren genoemd. Door deze scheuren ontstaat carbide-precipitatie. Het inwendige van de aanwezige korrels wordt door dit proces versterkt. Daarnaast segregeren onzuiverheden zoals S, P, Sn, As naar de grenzen van de korrel, hierdoor worden deze verzwakt. Langs de grenzen van de korrel treed de meeste vervorming op. Door deze vervorming kunnen scheuren ontstaan.

Lamellaire scheuren
Als in het lasmetaal niet-metallische insluitsels aanwezig zijn kunnen lamellaire scheuren ontstaan. Deze scheuren worden gevormd in de fabriek waar het metaal wordt vervaardigd. Tijdens het gieten van metaal in een vorm kan verontreiniging in het metaal terecht komen. Deze verontreiniging kan bijvoorbeeld een deel van de ‘slak’ zijn die bij het smeltproces van ijzer en ijzererts op het gesmolten staal drijft. Als de lasser een lasverbinding maakt op de hoogte van de verontreiniging in het metaal zal de verontreiniging door de uitwerking van de krimpspanning gaan splijten en inscheuren. Tegenwoordig wordt staal meestal vervaardigd met een continu-gietproces. Hierdoor wordt de kans op verontreinigingen beperkt en komen lamellaire scheuren bijna niet meer voor.

Wat zijn lasfouten en hoe ontstaan lasfouten?

Tijdens lassen worden verschillende materialen aan elkaar vast gesmolten. Hierbij kan gebruik worden gemaakt van verschillende lasprocessen. Bekende lasprocessen zijn lassen met beklede elektrode (BMBE lassen), MIG/MAG lassen en TIG lassen. Naast deze lasprocessen zijn er nog vele andere lasprocessen die worden gebruikt in de metaaltechniek. Elk lasproces heeft zijn eigen specifieke kenmerken. Bij lassen wordt gebruik gemaakt van een plasmaboog of een vlam om voldoende hitte te creëren voor het smeltbad van het lasproces. Daarnaast worden bij lassen ook bepaalde inerte en actieve gassen gebruikt. Dit verschilt echter per lasproces. Het lastoevoegmateriaal is ook een belangrijk aspect van het lasproces. Al deze verschillende aspecten worden beschreven in een lasmethodebeschrijving LMB of een Welding Procedure Specification WPS. Tijdens het lassen kunnen echter fouten ontstaan.

Lasfouten
In bovenstaande inleiding is beschreven welke factoren onder andere aan de orde kunnen komen wanneer men gaat lassen. Er zijn verschillende lasprocessen en verschillende materialen die gelast kunnen worden. Lassen wordt meestal gedaan onder hoge temperaturen. Hierdoor worden materialen zeer snel opgewarmd en koelen ze daarna weer af. Hierdoor ontstaan structuurveranderingen, krimp en spanningen. De reactie van materialen op het lasproces en het gebruikte gas is verschillend. Omdat er zoveel verschillende aspecten zijn die invloed hebben op het lasproces bestaat er een kans op fouten. Er zijn veel verschillende fouten die kunnen ontstaan, deze fouten worden ook wel lasfouten genoemd en kunnen in elk lasproces optreden.

Hoe ontstaan lasfouten?
Lasfouten ontstaan doordat de lasser in het voorbereidend werk, tijdens het lassen of in de nabehandeling foutief gehandeld heeft of gebruik heeft gemaakt van ondeugdelijke materialen en gereedschappen. Een lasser kan bijvoorbeeld het lastoestel verkeerd hebben ingesteld waardoor teveel warmte wordt ingebracht en er inbrandingen ontstaan. Ook de positie van de toorts is van groot belang. Als de toorts te ver bij het smeltbad vandaan wordt gehouden kunnen insluitingen in de las ontstaan waardoor de las aanzienlijk van minder goede kwaliteit wordt.

Veel lasfouten kunnen worden voorkomen door de lasser wanneer hij of zij de lasmethodebeschrijving of Welding Procedure Specification goed leest en de aanwijzingen daarin nauwkeurig opvolgt. Er zijn echter ook externe factoren die de kans op lasfouten kunnen vergroten. Hierbij kan men bijvoorbeeld denken aan vocht, tocht, wind en temperatuurwisselingen. Ook stof en ander vuil kunnen van invloed zijn op de kwaliteit van de las.

Gevolgen van lasfouten
De oorzaken van lasfouten zijn divers en de gevolgen van d lasfouten zijn eveneens verschillend. Ook de ernst van de fouten is verschillend. Lasfouten kunnen bijvoorbeeld alleen invloed hebben op het uiterlijk van de las. Door deze lasfouten kan de las minder mooi lijken maar kan de las nog wel sterk genoeg zijn. Het uiterlijk van een las kan vaak doormiddel van nabewerking worden verbetert. Hierdoor kunnen eventuele lasfouten aan het oppervlak worden weggewerkt.

Een lasfout kan echter ook grote gevolgen hebben. Een lasfout kan bijvoorbeeld ook een scheur zijn die in de las. Voorbeelden van scheuren die in een las kunnen ontstaan zijn:

  • Stollingsscheuren of h/b scheuren
  • Lamellaire scheuren
  • Spanningsvrijgloeischeuren
  • Waterstofscheuren

Een scheur in een lasverbinding zorgt er voor dat de lasverbinding minder stevig is, de kans op het doorscheuren van een lasverbinding is dan aanwezig. Vooral wanneer de las onderdeel uitmaakt van een dragende constructie brengt een scheur ernstige risico’s met zich mee voor de stevigheid van het geheel.

Opsporen van lasfouten
Er zijn verschillende methodes waarmee men lasfouten kan opsporen. Deze opsporingsmethodes kunnen worden onderverdeeld in destructief onderzoek (DO) en niet destructief onderzoek (NDO). Bij destructief onderzoeken van lasverbindingen wordt de las daadwerkelijk vernietigd. Het product of werkstuk is daardoor niet meer bruikbaar. Daarom doet men destructief onderzoek meestal op basis van steekproeven. Tijdens destructief onderzoek kan een lasverbinding bijvoorbeeld worden doorgezaagd. Hierdoor kan men de zaagsnede goed bekijken en zien of er scheuren of insluitingen aanwezig zijn. Het spreekt voor zich dat de lasverbinding door het zagen compleet is verwoest en dat het werkstuk daardoor niet meer bruikbaar is.

Niet destructief onderzoek wordt tegenwoordig ook regelmatig toegepast. Hierbij wordt het werkstuk niet vernietigd. De meest eenvoudige vorm van niet destructief onderzoek is het visueel beoordelen van de las met ‘het blote oog’. Hierbij kan men onder andere letten op randinkarteling, inbrandingen en het uitzakken van de las.

Andere vormen van niet destructief onderzoek wordt met behulp van apparatuur gedaan. Hierbij kan men bijvoorbeeld gebruik maken van röntgenonderzoek of echografie. Bij röntgenonderzoek worden röntgenfoto’s gemaakt van de las en bij echografie wordt gebruik gemaakt van geluidsgolven. Van de onderzoeksresultaten worden rapporten opgesteld waarmee de kwaliteit van de onderzochte las inzichtelijk kan worden gemaakt.

Wat is een European Welding Technologist EWT en wat voor werk doet deze?

European Welding Technologist EWT is een oude term voor een lastechnicus. Tegenwoordig wordt de functiebenaming Middelbaar Lastechnicus (MLT) gebruikt, de internationale functiebenaming hiervoor is International Welding Specialist, dit wordt ook wel afgekort met IWT. Iemand geldig EWT papieren heeft tegenwoordig in feite IWT papieren. De waarde van deze papieren op de arbeidsmarkt is gelijk zolang de EWT-er of IWT-er tijdens zijn of haar loopbaan er voor gezorgd heeft dat de papieren niet zijn verlopen.

Wat voor werk doet een EWT, IWT of een MLT?
Iemand met geldige EWT, IWT of MLT papieren kan in de werktuigbouwkunde of metaaltechniek verschillende functies uitoefenen. Een lastechnicus heeft veel verstand van lasprocessen en de normeringen die daarbij horen. Door deze kennis is een lastechnicus een waardevolle medewerker voor een bedrijf. Meestal werkt een lastechnicus in het middenkader van een bedrijf als een adviseur, inspecteur of medewerker kwaliteit. Een lastechnicus kan ook worden ingezet als lascoördinator. De lascoördinator controleert of de lasverbindingen binnen een bedrijf worden gemaakt volgens de normen.

Deze normen kunnen zowel Europese normen (EN) zijn als Amerikaanse Normen (ASME). Veel bedrijven in de werktuigbouwkunde werken onder één of meerdere normen. Deze normen stellen eisen aan de laskwaliteit. Bedrijven moeten hun lasmethodes kwalificeren. Doormiddel van lasmethodekwalificaties wordt duidelijk onder welke normen er binnen een bedrijf mag worden gelast. De lastmethodes die gekwalificeerd zijn worden vervolgens weer verwerkt in een lasmethodebeschrijving of een WPS (Welding Procedure Specification).

Een EWT, IWT of een MLT heeft veel kennis over lasprocessen
Een middelbaar lastechnicus heeft voldoende kennis om de lasprocessen in een lasmethodebeschrijving of WPS te beschrijven. Daarnaast weet een middelbaar lastechnicus ook welke normeringen bij bepaalde projecten horen. Hierdoor is de MLT een belangrijke vraagbaak voor een werktuigbouwkundige bedrijven.

Een lastechnicus heeft voldoende kennis om adviezen te gegeven over lasprocessen. Hij of zij weet welke verschillende soorten lasnaden gebruikt kunnen worden en welke lasprocessen gebruikt kunnen worden. hierbij kan gedacht worden aan MIG/MAG, TIG en BMBE lassen. Er zijn echter nog vele andere lasprocessen die door een lasser uitgevoerd kunnen worden. Elk lasproces heeft specifieke eigenschappen die het lasproces juist wel of juist niet geschikt maken voor een bepaald project. Een middelbaar lastechnicus kan hier over het algemeen goed over adviseren.

Daarnaast kan deze specialist ook goed adviseren over de lasnaden en bijbehorende vooropeningen die gemaakt moeten worden. Verder is voorstoken bij sommige lasprocessen vereist. Meestal gaat het hierbij om speciale metalen of plaatdiktes. De temperatuur van de plaat moet tijdens het lassen op het gewenste niveau zijn andere ontstaat geen stevige verbinding of gaat de plaat zelfs scheuren. Daarom weet een middelbaar lastechnicus meestal ook wat de voorstooktemperatuur is van de projecten die gelast moeten worden. Een middelbaar lastechnicus zal voortdurend nieuwe lastechnieken moeten leren en de ontwikkelingen op lastechnisch gebied moeten volgen.

Een MLT, EWT of IWT kan ook worden ingezet voor het controleren van lassen. Dit zal meestal in eerste instantie visueel gebeuren. Daarbij kan bijvoorbeeld gekeken worden of er geen randinkarteling is en of de doorlas goed is gemaakt. Het echte onderzoeken van lassen gebeurd meestal in een speciaal onderzoeklaboratorium. Hierbij kan de las zowel destructief als niet-destructief worden onderzocht. Bij destructief onderzoek wordt het werkstuk tijdens het onderzoeken van de las vernietigd en bij niet-destructief onderzoek blijft het werkstuk behouden.

Moet een middelbaar lastechnicus ook lassen?
Meestal is een middelbaar lastechnicus een middenkader functie. Deze persoon kan adviseren en coördineren op lasgebied. Het is over het algemeen wel belangrijk dat een lastechnicus verstand heeft van de praktijk wanneer deze daarover moet adviseren. Veel lastechnici kunnen daarom zelf ook lassen omdat ze dit op een opleiding hebben gehad of omdat ze als lasser zijn begonnen en zijn doorgegroeid naar MLT. Toch zullen ze zelf in de praktijk nauwelijks lasverbindingen maken. Dit wordt meestal gedaan door gecertificeerde lassers. Na verloop van tijd kan de lastechnicus het lasser wat verleren. Door zijn of haar praktijkkennis uit het verleden kan de lastechnicus wel goed de praktische kant van het lassen doorgronden. Dit is belangrijk bij het beschrijven van een WPS en het adviseren van lassers.