Wat is een kerncentrale en waarvoor worden kerncentrales gebruikt?

Kerncentrales zijn energiecentrales waarin elektrische energie wordt opgewekt door een proces van kernsplijting. Kernsplijting is een proces waarbij een zware onstabiele atoomkern wordt opgesplitst in twee lichtere kernen. Hierbij komt veel energie vrij met bijbehorende splijtingswarmte. Deze splijtwarmte zorgt er voor dat water wordt omgezet in stoom. Door de stoom wordt een stoomturbine aangedreven. De stoomturbine draait hierdoor enorm snel rond. De mechanische energie van de turbine wordt via een alternator omgezet in elektrische energie. Uiteindelijk wordt in een kerncentrale dus elektrische energie opgewekt.

Hoeveel energie levert een kerncentrale?
Kerncentrales zijn opgebouwd uit een aantal verschillende kernreactoren. Er zijn kernreactoren die een paar megawatt leveren maar grote kerncentrales leveren tot wel 8000 megawatt. Aan het begin van 2013 waren er over de gehele wereld 427 kernreactoren in gebruik. Deze kernreactoren zijn verspreid over 31 landen. In de Verenigde Staten zijn een honderdtal kernreactoren en in Frankrijk zijn er 58 geplaatst. In totaal zouden al deze kernreactoren indien ze operationeel blijven een elektrisch vermogen kunnen leveren van  364 gigawatt. In het jaar 2012 was ongeveer tien procent van de mondiale elektriciteitsproductie afkomstig uit kerncentrales.

Wat is stadsverwarming en hoe wordt dit verwarmingssysteem toegepast?

Stadsverwarming  of blokverwarming zijn verwarmingssystemen die worden gebruikt om woningen te verwarmen en/ of van warm water te voorzien. Hierbij wordt geen gebruik gemaakt van aardgas. Woningen die aangesloten zijn op stadsverwarming hebben daardoor geen eigen cv-ketel. De woningeigenaren krijgen warm water door een ondergronds netwerk van warmwaterleidingen. Dit wordt ook wel warmtedistributie genoemd. Het warme water wordt namelijk getransporteerd of gedistribueerd naar de aangesloten woningen en bedrijven. Deze woningen en bedrijven maken dus gebruik van zogenoemde stadswarmte.

Hoe ontstaat stadswarmte of stadsverwarming?
Water wordt uit zichzelf niet warm of koud. Er dient hiervoor een bewerking plaats te vinden. Deze bewerking kan bijvoorbeeld plaatsvinden bij elektriciteitscentrales. In de meeste elektriciteitscentrales worden kolen verbrand met eventueel biomassa zoals houtpallets. De warmte wordt gebruikt om water te verwarmen tot er stoom ontstaat. Deze stoom brengt turbines in beweging zodat elektriciteit kan worden opgewekt. Niet alle warmte wordt tijdens dit proces optimaal benut. Er ontstaat namelijk restwarmte.

Deze restwarmte kan op verschillende manieren worden hergebruikt. Een manier om restwarmte te hergebruiken is het verwarmen van water voor stadsverwarming. Omdat deze verwarming plaatsvindt bij een warmtebron in bijvoorbeeld de eerdere genoemde energiecentrales hoeft er geen gebruik te worden gemaakt van cv-ketels. Dit zorgt er voor dat warmtedistributie energiebesparend en kostenbesparend werkt. Voor het aanleggen van een warmtedistributienetwerk moeten echter wel grote investeringen worden gedaan. Daarnaast kost het aanleggen van een warmtedistributienetwerk ook energie en materiaal.

Huizen die aangesloten zijn op stadswarmte hebben een dubbele waterleiding. Een waterleiding voor koud water en een waterleiding voor verwarmd water. Deze huizen zijn over het algemeen niet aangesloten op het aardgasnet. Doormiddel van een warmtewisselaar wordt het leidingwater door de warmtedistributie verwarmd. Bij woningen met een aparte waterleiding voor warm water wordt het warme tapwater bij het verdeelstation geproduceerd.

Bronnen van stadswarmte
Naast de eerder genoemde elektriciteitscentrales worden ook andere bronnen aangewend voor stadswarmte. Bij afvalverbrandingsinstallaties (AVI’s) ontstaat ook restwarmte die kan worden gebruikt voor warmtedistributie. Naast restwarmte die wordt gewonnen vanuit elektriciteitscentrales en afvalverbrandingsinstallaties is het ook mogelijk om rechtstreeks warmte te winnen door bijvoorbeeld biomassa te verbranden. Hierbij komt echter (ook)  CO2 vrij. Warmtepompen en geothermie zijn over het algemeen beter voor het milieu. Daarnaast kan gebruik worden gemaakt van zonnecollectoren.

Wat is een turbine en waarvoor worden turbines gebruikt in de techniek?

Turbines worden op verschillende manieren toegepast in de techniek. De naam turbine is afgeleid van het Latijnse woord ‘turbinis’ dit betekend in het Nederlands wervelstroom. Claude Burdin is de persoon die de naam turbine has voorgesteld in 1828 tijdens een ingenieurswedstrijd. Er bestaan verschillende soorten turbines. Men kan turbines indelen op een aantal manieren. Zo kan men turbines indelen in gasturbines, stoomturbines, windturbines en waterturbines. Zo maken waterkrachtinstallaties bijvoorbeeld gebruik van waterturbines. Deze turbines worden door water in beweging gebracht. Windturbines komen in beweging door de kracht van de wind. Naast de onderverdeling tussen de vloeistoffen en gassen die een turbine in beweging brengen kan men turbines ook op een andere manier indelen. De onderverdeling tussen impulsturbines en reactieturbines komt in de praktijk ook voor.

Hoe werken turbines?
Turbines zijn turbomachines die stromingsenergie omzetten in mechanische energie. Deze stromingsenergie kan uit een stroom vloeistof of gas bestaan en heeft een bepaalde snelheid. Als men deze stroom richt op een schoepenrad die bevestiging is aan een rad zorgt de snelheid van de stroom vloeistof of gas er voor dat het rad gaat draaien. Het is belangrijk dat de stroming goed wordt geleid in de gewenste richting. Daarom worden meestal behuizingen aangebracht rond het schoepenrad. Dit gebeurd bijvoorbeeld bij stoomturbines, gasturbines en waterturbines. Als men de stroming van het gas of de vloeistof goed stuurt in de richting van het schoepenrad draait deze effectiever en werkt de turbine beter. Doormiddel van het  roterend schoepensysteem zet de turbine de stromingssnelheid om in mechanische energie. De mechanische energie kan vervolgens worden gebruikt voor de aandrijving van een machine of een elektrische generator.

Waarvoor worden turbines gebruikt?
Turbines worden gebruikt om stromingsenergie om te zetten in mechanische energie oftewel bewegingsenergie. Hierdoor kunnen machines direct worden aangedreven maar het is ook mogelijk om turbines te gebruiken om elektriciteit op te wekken. Hiervoor worden bijvoorbeeld stoomturbines gebruikt in elektriciteitscentrales. De stoomdruk of stoomsnelheid brengt hierbij een schoepenrad in beweging. Een generator zet vervolgens deze beweging om in elektrische energie. Ook met windmolens of windturbines kan elektriciteit worden opgewekt. Deze turbines worden doormiddel van de wind in beweging gebracht. Hierbij zorgt een generator er ook voor dat de mechanische energie wordt omgezet in elektriciteit.

Hydraulische turbines kunnen worden gebruikt voor het omzetten van de stromingsenergie van water in bijvoorbeeld elektriciteit. Deze stromingsenergie ontstaat als er een hoogte verschil tussen twee waterniveaus aanwezig is en het ene waterniveau naar het andere niveau kan stromen. Het water stroomt naar het laagste punt en creëert hierdoor stromingsenergie. De hydraulische turbine kan door deze stromingsenergie in beweging worden gebracht. Daardoor gaat de hydraulisch turbine draaien en ontstaat mechanische energie die weer in elektrische energie kan worden omgezet met behulp van een generator. Meestal zijn er in een waterkrachtcentrale meerdere hydraulische turbines aanwezig.

Turbine of compressor
In de techniek worden ook compressoren gebruikt. De werking hiervan is juist omgekeerd. Doormiddel van elektriciteit wordt een schoepenrad in beweging gebracht waardoor luchtdruk ontstaat. Deze luchtdruk kan worden gebruikt voor pneumatiek. Pneumatische systemen kunnen worden gebruikt om machines in beweging te brengen.

Wat is warmte-krachtkoppeling WKK en waarvoor wordt deze techniek gebruikt?

Warmte-krachtkoppeling is het benutten van de restwarmte die vrijkomt in de stoomkringloop wanneer stoomdruk wordt gebruikt voor het opwekken van elektriciteit. Deze restwarmte kan worden gebruikt voor verschillende doeleinden. Hieronder is in een aantal alinea’s uitgelegd hoe de stoomkringloop werkt voor het opwekken van elektriciteit. Daarna is aangegeven wat een warmte-krachtkoppeling is en waarom deze zo belangrijk is.

De stoomkringloop voor het opwekken van elektriciteit
In stoomketels wordt water verwarmt zodat stoom ontstaat. Deze stoom bevat een bepaalde druk die er voor zorgt dat  de stoom arbeid kan verrichten. Voor het opwekken van elektriciteit wordt de stoomdruk gebruikt om een aantal loopwielen die van schoepen zijn voorzien in beweging te brengen. De stoom drukt tegen de schoepen van de loopwielen aan zodat deze snel beginnen te draaien. Deze loopwielen met schoepen bevinden zich in de stoomturbine.

Deze stoomturbine is gekoppeld aan een generator. De generator wekt elektrische stroom op met een hoge spanning. De stoom die de schoepen in beweging heeft gebracht heeft in feite arbeid verricht. Nadat de stoom arbeid heeft verricht wordt ook wel gesproken over afgewerkte stoom. Deze afgewerkte stoom wordt weer afgekoeld. Hierdoor veranderd de stoom weer in water. Dit proces gebeurd doormiddel van condensors in een condensatieturbine. Deze bevat een aantal bundels met condensorpijpen. Koelwaterpompen zorgen er voor dat er koelwater door deze condensorpijpen wordt geperst. De afgewerkte stoom veranderd in water oftewel in condensaat wanneer deze in contact komt met de condensorpijpen. Dit condensaat wordt weer naar de ketel teruggebracht, die het vervolgens doormiddel van hitte weer in stoom verandert. De stoomkringloop is nu rond. Het koelwater dat door de condensorpijpen stroomt wordt echter warm door de afgewerkte stoom en wordt naar buiten getransporteerd.

Warmte-krachtkoppeling
In een stoomkringloop wordt slechts een deel van de opgewekte warmte gebruikt voor het opwekken van elektriciteit. Het elektrisch rendement van moderne elektriciteitscentrales is ongeveer zestig procent. De overige energie die in de stoomkringloop van deze centrales ontstaat komt vrij als warmte. Deze warmte wordt afgevoerd met het koelwater zoals in de vorige alinea is beschreven. Doormiddel van een warmte-krachtkoppeling kan deze warmte nuttig worden gebruikt. De warmte-krachtkoppeling wordt vaak afgekort met WKK en wordt gebruikt om de warmte uit de afgewerkte stoom te benutten voor verwarming en droging. Door de WKK kunnen woningen, fabrieken en utiliteit worden verwarmd. Een warmte-krachtkoppeling is een gecombineerde opwekking en productie van elektriciteit en warmte die nuttig wordt gebruikt. Doordat de warmte die vrijkomt uit de afgewerkte stoom wordt hergebruikt voor de verwarming van gebouwen hoeft men minder brandstoffen te verbranden om de gewenste temperatuur te bereiken. Hierdoor wordt brandstof bespaard. Dit is gunstig voor het milieu omdat minder brandstoffen worden verbrand en daarmee de CO2 uitstoot wordt beperkt. Daarnaast is het ook nog financieel aantrekkelijk.

Samenvatting: hoe werkt een warmte-krachtkoppeling?
Het gebruik van een warmte-krachtkoppeling zorgt er voor dat de afgewerkte stoom die de stoomturbine verlaat niet wordt gecondenseerd in een condensor. Het warme water dat de afgewerkte stoom bevat wordt hergebruikt voor bijvoorbeeld een centrale verwarming.