Wat is Chroom-6?

Chroom-6 of chroom (VI) is een positief geladen geproduceerde variant van natuurlijk chroom (Cr). Het zijn chroom houdende verbindingen met zeswaardig chroom, zoals chroomzuur, chroomtrioxide, dichromaten en chromaten en worden gebruikt voor het beschermen van metaal (ferro) tegen roest. Let op! Chroom-6 is zeer schadelijk voor de gezondheid, het tast het DNA van mensen en dieren aan en kan verschillende soorten kanker veroorzaken! Hieronder is meer informatie over Chroom-6 en de schadelijke effecten daarvan weergegeven.

Waarvoor werd Chroom-6 gebruikt?
Chroom-6 werd vooral in de periode tussen de jaren 60 en 80 veel gebruikt. Voor corrosiebestrijding werd Chroom-6 in het verleden aan de oppervlakte van het metaal aangebracht. Chroom-6 werd overigens niet alleen op metaal aangebracht deze zeer giftige stof werd ook in hout, verf en zelfs plastic verwerkt. Zo kan het voorkomen dat men bij he schuren van chroomhoudende verflagen kleine deeltjes Chroom-6 door de lucht verspreid. Deze chroomhoudende verflagen kunnen bijvoorbeeld op bepaalde vliegtuigen, auto’s en andere voertuigen zitten.

Hoe komt Chroom-6 vrij?
Chroom-6 kan in de atmosfeer komen door het werken met het materiaal. Er kunnen dampen afkomen die bij inademing schadelijk zijn. Ook bij het lassen van sommige soorten roestvaststaal kan Chroom-6 vrij komen en bij het zagen van hout dat met Chroom-6 is geïmpregneerd hout. Door het zagen en schuren van hout en metaal dat Chroom-6 bevat kunnen kleine fijnstofdeeltjes vrijkomen van dit gevaarlijke materiaal.

Hoe ziet Chroom-6 er uit?
Chroom-6 wordt door chemici meestal chroom(VI) genoemd. Daarnaast komt deze chemische stof ook voor als chroom(VI)oxide (CrO3). Deze aanduiding maakt duidelijk er zuurstofatomen aan het metaal zitten. CrO3 is een vaste stof in bijvoorbeeld korrelige vorm. Als men CrO3 in kleine korrelige vorm ziet dan lijken het net donkerrode steentjes. De stof lost goed op in water waardoor het water in combinatie met CrO3 een zeer sterk stuur vormt.

Gevaren van Chroom-6
Martin van den Berg, hoogleraar toxicologie aan de Universiteit Utrecht heeft in een artikel van Joost de Vries in de Volkskrant van 21 augustus 2014, 17:31 aangegeven wat de schadelijke effecten kunnen zijn van Chroom-6. Volgens deze expert in de toxicologie heeft Chroom 6 zeer schadelijke gevolgen voor de gezondheid als men er aan wordt blootgesteld. Chroom-6 kan onder ander longkanker veroorzaken maar ook kanker in de neus en neusbijholte. Verder kunnen er door de blootstelling aan Chroom-6 verschillende soorten allergieën, chroomzweren en chronische longziekten ontstaan. Chroom-6 verbindingen zijn ook giftig voor de voortplanting.

Hoe komt Chroom-6 het lichaam binnen?
Een gevaarlijk aspect van Chroom-6 is dat deze stof op drie manieren in het menselijk lichaam kan komen. Dat kan bijvoorbeeld door inademing, maar ook door inslikken en via de huid door de poriën. Volgens de hoogleraar toxicologie is Chroom-6 daardoor gevaarlijke dan asbest. Asbest wordt namelijk nauwelijks door de huid opgenomen en is vooral via inademing schadelijk voor de mens. Als men met Chroom-6 zou werken zou men het hele lichaam tegen deze gevaarlijke stof moeten beschermen inclusief de ademhaling.

Wat is schooperen voor soort metaalbewerkingstechniek?

Schooperen is een techniek die wordt gebruikt in de metaalbewerking. Doormiddel van schooperen wordt metaal bestand beter tegen roest. Schooperen wordt ook wel vuurverzinken of vlamverzinken genoemd. De naam schooperen is afgeleid van de Zwitserse uitvinder M. U. Schoop. Men spreekt schooperen uit als “schoeperen”. Schooperen werd aan het begin van de 20ste eeuw ingevoerd en is een preventieve metaalbewerkingstechniek waarmee corrosie of oxidatie van een metalen oppervlak wordt tegen gegaan door een dun laagje van een ander soort metaal er op aan te brengen.

Hoe wordt schooperen gedaan?
Schooperen wordt gedaan met een vlam en een corrosievast metaal zoals aluminium en zink. Aluminium en zink oxideren weliswaar maar deze oxidatie is veel minder destructief dan de roestvorming die plaatsvindt op ferro legeringen zoals staal. In plaats daarvan is de oxide van aluminium en zink juist extra hard en beschermd het daardoor het onderliggende metaal nog beter. Daarom worden aluminium en zinklaagjes aangebracht over ferro-producten.

Doormiddel van een vlam wordt het toevoegmateriaal (zink of aluminium) gesmolten. Dit toevoegmateriaal wordt meestal in de vorm van een draad in de vlam gebracht. De hitte van de vlam zorgt er voor dat het toevoegmateriaal op het smeltpunt wordt gebracht. Het gesmolten materiaal wordt vervolgens neergeslagen op de oppervlakte van het materiaal dat beschermd moet worden. Het gesmolten zink of aluminium hecht zich als kleine spetters op het oppervlak. Naar mate het proces vordert wordt het gehele oppervlak bedekt met kleine druppeltjes zodat er een dichte ontstaat. De oxide die gevormd wordt op aluminium en zink zorgt voor een extra dichte laag waardoor het onderliggende materiaal nog beter is beschermd tegen corrosie.

Belangrijke aandachtspunten
Men kan alleen schooperen als bewerkingsproces toepassen op onvervuild schoon metaal. Daarom wordt metaal dat men wil schooperen eerst gestraald zodat er geen corrosie, verfresten of andere vervuiling meer aanwezig zijn. Verder kan men na het schooperen het product niet meer lassen op de delen waar deze laag is aangebracht. Daarom moet men geen materialen gaan schooperen die nog gelast moeten worden. 

Wat is putroest en hoe ontstaat putroest?

Putroest is een vorm van corrosie die ontstaat bij staalsoorten. Roest is een andere benaming voor de corrosie van ijzer (ferro). Roest ontstaat bij ferrometalen. Dit zijn legeringen die als hoofdbestandsdeel ijzer hebben. Zuurstof en water in de lucht zijn de belangrijkste veroorzakers van corrosie. Als men ijzer en ijzerlegeringen niet aan de buitenkant beschermd tegen de uitwerking van zuurstof en water dan treed corrosie op. Men kan ijzerlegeringen zoals staal (staal is ijzer gelegeerd met 0,1 tot 1,7 procent koolstof).

Roestvorming
Daarnaast hebben ook zuren en zouten een sterke invloed op de corrosievorming. Corrosie heeft een zeer nadelige invloed op de mechanische belastbaarheid van een stalen constructie. Corrosie verzwakt het staal en maakt het bros. Door corrosie worden delen van het oppervlak ‘opgevreten’. Het staal wordt daardoor steeds dunner en dat heeft gevolgen voor de sterkte van de constructie. Daarnaast is corrosie of roest ook zeer nadelig voor het uiterlijk van producten en constructies die van staal zijn gemaakt.

Vliegroest is de meest oppervlakkige vorm van corrosie. Deze vorm van corrosie is vaak makkelijk te verwijderen. Als men de oppervlakkige corrosie niet gaat verhelpen kan de roest dieper in het ijzer vreten. Er ontstaan op een gegeven moment blaren. Onder deze blaren gaat het roestproces verder.

Putroest
Als men het roesproces niet stopt gaat het roesten onder de roestblaren steeds verder. Hierdoor kunnen diepe putten ontstaan in het staal. Deze roestvorm noemt men daarom ook wel putroest. Als er putroest ontstaat zijn er zwakke plekken in het staal. Deze zwakke plekken vreten vaak diep in het staal maar kunnen wel verholpen worden als de mechanische belastbaarheid van het staal niet te erg is aangetast. In dat geval kan men de plekken opvullen met plamuur.

Dit gebeurd bijvoorbeeld wel in de autotechniek bij autoschadebedrijven. Als er roestschade aan de carrosserie ontstaat vult men deze op met plamuur als men de roestresten heeft verwijdert. Het plamuur strijkt men glad en laat men uitharden. Vervolgens schuurt men de plamuur op tot deze helemaal glad is. Daarna gaat men de plamuur opspuiten in de gewenste lakkleur.

Wat is rhodineren of rhoderen?

Rhodineren wordt ook wel rhoderen genoemd en is een verzamelnaam van verschillende technieken waarbij het element rhodium aan de buitenkant van een andere metaalsoort wordt aangebracht. Rhodium is een scheikundig element. Het symbool voor dit element is Rh en atoomnummer 45. De kleur van rhodium is zilverwit. Om die reden wordt rhodium ook wel aangebracht over sierraden. Men past het ook wel toe bij sieraden die van zogenoemd witgoud zijn  gemaakt. het rhodium wordt daarbij aangebracht over het gele goud heen. Het goud verandert daarbij dus niet van kleur.

Rhodineren
Het aanbrengen van rhodium wordt meestal elektrolytisch gedaan. Dat wil zeggen dat het doormiddel van een elektrisch potentiaalverschil wordt aangebracht op een metalen object. De laag die er op aangebracht wordt is meestal erg dun. Soms wel dunner dan 0,1 micron dikte.

Waarom rhodineren?
Rhodium wordt aangebracht om de eigenschappen van een bepaald product te verbeteren. Gunstige  eigenschappen van rhodium zijn de corrosievastheid en hardheid van het materiaal. Als men rhodium op elektrolytische wijze aanbrengt op een metalen product is het product beter beschermd tegen krassen en tegen corrosie. Om die reden is het geschikt om verwerkt te worden in de katalysator van auto’s. Daarnaast is het materiaal geschikt om weerstand te bieden tegen agressieve stoffen. Bovendien heeft het metaal een bepaalde sierwaarde waardoor het voor sierraden wordt gebruikt.

Wat is vliegroest en hoe ontstaat vliegroest?

Vliegroest wordt ook wel vlugroest genoemd en is roest aan de oppervlakte van een object, daarom wordt de benaming oppervlakteroest ook wel gebruikt. Vliegroest wordt veroorzaakt door roestdeeltjes die extern worden aangevoerd. De oorzaak van vliegroest ligt dus niet in het voorwerp of object dat is aangetast. De roestdeeltjes dwarrelen neer op een object en kunnen daardoor het object een oranjebruine was geven en het de oppervlakte ruw maken.

Waar komt vliegroest voor?
Vliegroest kan op verschillende plaatsen voorkomen. Omdat deze vorm van roest extern wordt aangevoerd kan vliegroest alleen ontstaan in de buurt van roestige objecten en machines. Hierbij kan gedacht worden aan industriegebieden, aan schepen en spoorwegen. Ook bij andere constructies die zijn gemaakt van staal kan vliegroest ontstaan. Deze vliegroest kan op andere metalen neerdwarrelen door de wind of regen. Vliegroest kan ook op roestvast staal terechtkomen. Dit kan onder andere gebeuren bij rvs bestek als dit in de vaatwasser wordt geplaatst met andere metalen objecten die wel roest bevatten. De vaatwasser kan de roest samen met het water en afwasmiddel rondpompen door de vaatwasser. Hierdoor kan de roest ook op andere roestvrijstalen objecten terecht komen.

Hoe ontstaat vliegroest?
De roestdeeltjes worden gevormd door constructies en objecten die vervaardigd zijn van staal en andere legeringen met ijzer (ferro) als hoofdbestandsdeel. De corrosie van ijzer noemt men ook wel roest of ijzeroxide. Tijdens het roestproces lossen deeltjes van het basismateriaal op en ontstaan kleine roestdeeltjes in de vorm van schilfertjes en poeder. Deze kleine roestdeeltjes kunnen doormiddel van de wind, regen, hagel en sneeuw van het object worden verwijderd en neerdalen op objecten in de omgeving. Deze objecten bevatten dan vliegroest. Vliegroest heeft een onedel karakter en kan daardoor vrij eenvoudig worden opgelost in vocht. Hierdoor worden ijzeroxiden gevormd. Deze ijzeroxiden kunnen het materiaal dat zich onder de vliegroest bevindt aantasten. Als dat materiaal ook ijzer bevat zoals bijvoorbeeld het geval is bij rvs  kan de dunne passiveringslaag,  die gevormd wordt door chroomoxide, worden aangetast zodat het rvs uiteindelijk ook zal gaan roesten. De roestdeeltjes contamineren het rvs.

Anode en kathode
Roest kan ook ontstaan wanneer een minder edel metaal in aanraking komt met een edeler metaalsoort. Het minder edele metaal wordt dan als het ware opgeofferd aan het edeler metaal door dat er een elektronenstroom ontstaat vanuit het minder edele metaal (anode) naar het edeler metaal (kathode). De kathode wordt door dit proces beschermd daarom noemt men dit proces ook wel kathodische bescherming, als dit proces wordt gebruikt om bepaalde metalen constructies tegen roest te beschermen. Het minst edele metaal zal langzamerhand oplossen doordat het wordt omgezet in oxide. Wanneer corrosie door dit proces ontstaat spreekt men echter niet van vliegroest.

Wat passiveren voor soort bewerkingstechniek?

Binnen de techniek worden verschillende bewerkingen uitgevoerd. Er zijn bewerkingen die worden gebruikt om producten en werktuigen vorm te geven en te ontwikkelingen. Daarnaast zijn er ook bewerkingstechnieken die er voor moeten zorgen dat de gemaakte producten goed worden beschermd tegen bijvoorbeeld corrosie. Passiveren is één van deze bewerkingstechnieken. Passiveren wordt ook wel passivatie genoemd en is gericht op het herstellen van de passivatielaag. Deze laag biedt bescherming tegen corrosievorming. Deze bewerkingstechniek wordt meestal gedaan nadat men heeft gebeitst en gespoeld.

Passiveren van roestvast staal
Chroom is een bestandsdeel van de rvs-legering en zorgt er voor dat het materiaal een goede corrosiebescherming heeft. Rvs bevat minimaal 12% vrije chroom. Het chroom zorgt voor een zeer dunne beschermlaag tegen corrosie. Deze volledig afsluitende beschermlaag wordt ook wel oxidehuid genoemd.

Roestvast staal (rvs) en de oxidehuid rondom het rvs kan doormiddel van mechanische beschadiging en lasprocessen worden aantast. Vreemde metaaldeeltjes kunnen er door beschadiging voor zorgen dat roestvast staal niet meer roestvast is. De chroomoxidehuid van het rvs kan door beschadigen van ijzer (ferro) en ijzerlegeringen worden aangetast waardoor het rvs kan gaan roesten. Doormiddel van een beitsbehandeling worden de vreemde metaaldeeltjes verwijdert van het oppervlak van rvs.

Vervolgens gaat men roestvast staal passiveren door het rvs in een bad te doen met salpeterzuur. Hierdoor hersteld het laagje chroomoxide en keert de passieve toestand terug. Doordat de chroomoxidelaag op het rvs weer wordt hersteld is het staal weer roestvast geworden.

Staal kan men ook passiveren. Staal wordt doormiddel van citroenzuur behandeld. Citroenzuur is hierbij de passiveervloeistof. Door het passiveerproces van deze vloeistof wordt het materiaal zilvergrijs. Staal wordt doormiddel van passiveren behandelt zodat vliegroest wordt voorkomen.

Wat is galvaniseren of galvanotechniek en waar wordt deze techniek voor gebruikt?

Galvaniseren is een techniek die kan worden gebruikt voor het aanbrengen van een corrosiebestendige metaallaag over metalen die corrosiegevoelig zijn. Galvaniseren wordt ook wel galvano, galvanotechniek of elektroplating genoemd. Voor deze techniek wordt gebruik gemaakt van elektriciteit. Galvaniseren kan doormiddel van elektrolytisch verzinken gebeuren. Hierbij wordt een zinklaagje aangebracht op bijvoorbeeld koolstofstaal (ijzer met een laag  percentage koolstof). Daarnaast kan men ook verchromen, hierbij wordt een laagje chroom aangebracht op bijvoorbeeld koolstofstaal. Vernikkelen is een proces waarbij een laagje nikkel op een metaal wordt aangebracht. De metalen chroom, nikkel en zink zijn corrosievast en behoren tot de non-ferro metalen. Ferro-metalen bestaan voor minimaal 50 procent uit ijzer. Hierdoor zijn deze metalen corrosiegevoelig. Een ander woord dat voor de corrosie van ferro wordt gebruikt is roest. Als ferro niet goed wordt beschermd tegen roest vreet de roest op den duur steeds meer dunne laagjes van het ferro weg. Hierdoor wordt het ferro-object dunner en gaan de mechanische eigenschappen achteruit. Het is daarom belangrijk dat objecten die gevoelig zijn voor roest voldoende worden beschermd.

Ferro-metalen beschermen tegen corrosie
Metalen die voor een groot deel uit ijzer bestaan zijn over het algemeen gevoelig voor corrosie (roest). Doormiddel van legeringen kan het metaal corrosievaster worden gemaakt. Hierbij kan gedacht worden aan roestvaststaal. Ook cortenstaal of COR-TEN ®-staal is een voorbeeld van ferro  waaraan verschillende metalen zijn toegevoegd om het corrosieproces te vertragen. In legeringen kunnen de eigenschappen van metalen elkaar versterken. Een legering is echter niet altijd een geschikte oplossing. Dit kan te maken hebben met de prijs maar ook met de ongunstige mechanische eigenschappen van de legering. Metallurgen hebben veel verstand van de eigenschappen van metalen. Hun vakgebied heet metallurgie. Vaak hebben metallurgen ook verstand van corrosie omdat het corrosieproces een belangrijke eigenschap is van een metaal. De corrosieleer valt onder de metaalkunde en onderzoekt hoe corrosie ontstaat door elektrochemische reacties bij verschillende metalen.

Corrosie kan ook worden tegengegaan door het aanbrengen van een beschermlaag over ferro-metalen. Dit kan door gebruik te maken van bijvoorbeeld menie of ijzermenie. Daarnaast kunnen metalen ook worden voorzien van poedercoating. Het galvaniseren waarover in de inleiding is geschreven kan ook worden toegepast om ferro-metalen te beschermen tegen roest.

Verzinken of galvaniseren
In de praktijk haalt men galvaniseren en verzinken regelmatig door elkaar. Het aanbrengen van een zinklaag op een metaal kan op twee verschillende manieren gebeuren. Een zinklaag kan worden aangebracht door thermisch verzinken, waarbij men gebruik maakt van een zinkbad. Daarnaast kan men elektrolytisch verzinken. In het laatste geval spreekt men van galvaniseren omdat hierbij elektrische stroom wordt gebruikt. Verzinken kan dus gebeuren doormiddel van galvaniseren en thermisch verzinken. Metaal dat verzinkt is kan daardoor zowel thermisch verzinkt zijn als gegalvaniseerd. Over thermisch verzinken is op de website technisch werken een uitgebreide tekst te vinden. Hieronder is kort beschreven wat galvaniseren is.

Wat is galvaniseren precies?
Hierboven is al een beetje informatie weergegeven over galvaniseren. In bovenstaande tekst wordt duidelijk dat galvaniseren wordt toegepast om de corrosievastheid van metalen te bevorderen. Daarnaast is aangegeven dat verschillende non-ferro metalen kunnen worden aangebracht doormiddel van galvanotechniek. Galvanotechniek omvat alle elektrochemische bedekkingstechnieken die in de metaaltechniek worden toegepast. Hieronder worden ook de autokatalytische processen geplaatst. Galvaniseren kan doormiddel van twee verschillende methodes worden gedaan. Het kan worden gedaan door gebruik te maken van een externe stroombron en doormiddel van een reductiemiddel dat aanwezig is in elektrolyt.

Doel van galvanotechniek
Galvanotechniek is een techniek waarbij een metaallaag over een andere metaalsoort wordt aangebracht. De eigenschappen van de metalen kunnen elkaar op die manier versterken. Staal bestaat bijna volledig uit ijzer en is daardoor gevoelig voor roest. Staal is echter goedkoop en beschikt over goede mechanische eigenschappen. Daarom wordt staal in de werktuigbouwkunde en in de bouw veel toegepast. Staal kan echter roesten en daarom afhankelijk van een goede beschermlaag. Zink is minder edel dan staal maar is wel beter bestand tegen roest. Doormiddel van galvaniseren wordt het corrosie vaste zink aangebracht op het sterkere staal. Hierdoor versterken de twee metalen elkaar. De voordelen van galvanotechniek kunnen als volgt worden opgesomd:

  • Galvaniseren zorgt voor een betere weerstand tegen corrosie,
  • Galvaniseren kan voor een beter uiterlijk zorgen van een constructie of machine. Met name verchromen wordt veel gebruikt voor het verbeteren van het uiterlijk van metalen.
  • Galvaniseren kan er ook voor zorgen dat het metaal beschermd wordt tegen beschadiging en krassen.
  • Galvaniseren heeft invloed op elektrische eigenschappen waaronder de geleidbaarheid van metalen.

Wat is metaalkunde en wat doet een metaalkundige?

Metaalkunde is gericht op het besturen van metalen en het onderzoeken van de toepassingen daarvan. Het vakgebied metaalkunde is nauw verbonden met metaaltechniek en de werktuigbouwkunde. In de metaalkunde is onderscheid gemaakt tussen het bestuderen van ferro en non-ferrometalen en legeringen. Ferro (is het Latijnse woord voor ijzer), metalen die bij de ferrogroep horen, hebben als hoofdbestandsdeel ijzer. Non-ferrometalen zijn over het algemeen minder corrosiegevoelig. Een metaalkundige houdt zich bezig met eigenschappen van metalen en onderzoekt deze nauwkeurig. Hieronder is een alinea weergegeven waarin beschreven is wat onder metaalkunde valt.

Waaruit bestaat metaalkunde?
Het onderzoeken van metalen is een breed vakgebied. Metalen kunnen verschillende eigenschappen hebben. Wanneer een metaalkundige alle metalen moet onderzoeken op alle eigenschappen staat deze voor een onmogelijke opdracht. Daarom wordt metaalkunde onderverdeeld in verschillende deelgebieden. Omdat een metaalkundige een specialist is kan hij of zij zich specifiek toeleggen op één of enkele deelgebieden die onder de metaalkunde vallen. Hieronder staan een aantal deelgebieden waaruit metaalkunde bestaat:

  • Lastechniek. Hierin wordt aandacht besteed aan de mogelijkheid om bepaalde metalen te lassen en wat de reactie van metalen zijn bij een bepaalde lastechniek. De doelstelling is hierbij om de juiste lastechniek voor een metaalsoort in kaart te brengen.
  • Metallurgie. Dit deelgebied van metaaltechniek is gericht op het onderzoeken van metalen om daarmee hun bestandsdelen en onderlinge samenhang, dichtheid en massa vast te stellen. Dit kan tot op microscopisch niveau gebeuren. Iemand die werkzaam is in de metallurgie wordt ook wel een metallurg genoemd.
  • Metallografie. Metalen hebben verschillende structuren die in het deelgebied metallografie in kaart worden gebracht. Metallografie is daardoor de structuurbeschrijving van metalen. Doormiddel van deze structuurbeschrijving kan de sterkte van metalen in kaart worden gebracht.
  • Gieterijkunde. Dit deelgebied van metaalkunde is gericht op de eigenschappen van metaal die invloed hebben op het vloeibaar maken en het gieten van metaal. Niet elke metaalsoort kan eenvoudig gegoten worden. Daarnaast zorgt ook de afkoeling van gegoten metaal vaak voor een krimp. Bij gieterijkunde wordt aandacht besteed aan de eigenschappen van metalen die van belang zijn bij het gieten. Voorbeelden van metalen en metaallegringen die gegoten worden zijn gietijzer, gietstaal en brons.
  • Corrosieleer. De meeste metalen hebben een bepaald corrosieproces. Dit proces ontstaat door elektrochemische reacties. Corrosie zorgt er voor dat de kwaliteit van het metaal kan worden aangetast maar dat hoeft niet. In corrosieleer wordt aandacht besteed aan de gevolgen voor de structuur en sterkte van metalen wanneer corrosie optreed.
  • Plastische vormgeving. Hierbij wordt aandacht besteed aan de vervormbaarheid van metalen.
  • Vermoeiing. Dit wordt ook wel fatigue genoemd. Wanneer metalen voortdurend belast worden kan de structuur van het metaal worden aangetast. Dit gebeurd zowel bij langdurige belasting als bij kort durende belasting die regelmatig voorkomt. Vermoeiing van metalen wordt ook wel metaalmoeheid genoemd. Het heeft gevolgen voor de mechanische sterkte van een constructie, werktuig of voertuig.

Een metaalkundige kan zich met één of meerdere van bovengenoemde deelgebieden bezighouden. De taken die een metaalkundige hierbij kan uitvoeren zijn in de volgende alinea beschreven.

Wat doet een metaalkundige?
Metaalkunde is voornamelijk gericht op het onderzoeken van metalen. Daarbij wordt met name gekeken naar de geschiktheid van metalen voor bepaalde toepassingen. Een metaalkundige kan hierbij de kwaliteit en eigenschappen van metalen onderling met elkaar vergelijken. Daarnaast kan een metaalkundige deze eigenschappen vergelijken met bijvoorbeeld kunststoffen, houtsoorten, steensoorten en andere materialen. Een metaalkundige maakt rapporten over de metalen die onderzocht zijn. Daarnaast kan een metaalkundige op basis van deze gegevens ook nieuwe methodes bedenken om metaal te gieten. Het in kaart brengen van eigenschappen van metalen zorgt er daarnaast voor dat een metaalkundige verschillende legeringen kan bedenken waardoor de eigenschappen van metalen elkaar versterken. Een metaalkundige kan daardoor bij verschillende bedrijven werken.

Waar werkt een metaalkundige?
Metaalkundigen zijn er niet veel in Nederland. Er zijn maar weinig opleidingen in Nederland die op HBO en Universitair niveau aandacht besteden aan het onderzoeken van de kwaliteiten van metalen. Dit is jammer want metalen worden in de techniek vrijwel overal toegepast. Het is belangrijk dat van te voren goed in kaart wordt gebracht wat de eigenschappen van de metalen zijn. De beoogde toepassing of het toepassingsgebied van metalen is hierbij van groot belang. Metalen worden onder andere toegepast in staalconstructie en de machinebouw. Ook worden metalen toegepast voor de vervaardiging van auto’s, treinen, bussen, tractoren en andere voertuigen. Binnen de scheepsbouw, jachtbouw, luchtvaarttechniek en de ruimtevaart wordt ook gebruik gemaakt van metalen. Een metaalkundige kan daardoor in verschillende bedrijven werkzaam zijn.