Leren lassen

Lassen is het maken van onuitneembare verbindingen tussen materiaal waarbij de uitgangsmaterialen in elkaar worden versmolten door het verhogen van de temperatuur van de contactvlakken. Deze korte definitie zal je niet in studieboeken over lassen aantreffen omdat deze is opgesteld door Pieter Geertsma van Technischwerken.nl. Toch is de definitie breed genoeg om alle verschillende soorten lasprocessen te omvatten. Er zijn een aantal basisaspecten die je moet weten voordat je kunt leren lassen. Hieronder staan een aantal belangrijke aspecten die van belang zijn als men wil leren lassen. Uiteraard wordt daarbij begonnen met algemene aspecten die bij het lassen aan de orde komen. Voor lassen is namelijk ook theoretische kennis nodig.

Smeltbad tijdens lassen
Als je wilt leren lassen is het belangrijk te weten dat bij lassen het maken van een goed smeltbad tussen het uitgangsmateriaal en eventueel het lastoevoegmateriaal van groot belang is voor het creëren van een kwalitatief goede lasverbinding.Het smeltbad is een term die wordt gebruikt voor het vloeibaar maken van de contactvlakken van de materialen die aan elkaar moeten worden verbonden. Dit smeltbad ontstaat door het verhogen van de temperatuur. Dat kan echter op verschillende manieren gebeuren. Zo maakt men bij autogeen lassen gebruik van een brander en maakt men bij MIG/MAG lassen en BMBE lassen gebruik van een elektrische vlamboog of plasmaboog. In het smeltbad kan men ook lastoevoegmateriaal aanbrengen waardoor het smeltbad groter wordt.

Beschermgas
Het is belangrijk dat het smeltbad niet verontreinigd raakt en goed beschermd wordt doormiddel van een beschermgas of backinggas. Dit gas is bij MAG lassen een actief gas, vandaar ook de Metal Active Gas. Actief gas is meestal CO2. Er zijn ook lasprocessen waarbij gebruik wordt gemaakt van een inert beschermgas. Voorbeelden hiervan zijn MIG lassen (afkorting staat voor: Metal Inert Gas) en TIG lassen (Tungsten Inert Gas). Een inert beschermgas zoals argon of helium beschermt het smeltbad nog beter tegen verontreiniging tijdens het lassen en zorgt er voor dat er geen corrosieve werking optreed tijdens het lassen.

Materialen die je kunt lassen
Bij het woord lassen denkt men meestal aan het maken van een onuitneembare verbinding tussen metalen maar met bepaalde lastechnieken kan men echter ook kunststoffen aan elkaar verbinden. Denk hierbij aan het spiegellassen waarbij de uiteinden van twee kunststofleidingen aan elkaar worden verbonden nadat ze eerst tegen een gloeiendhete ‘spiegel’ zijn aangedrukt. Omdat de meeste mensen lassen en lastechniek koppelen aan de metaalsector wordt in deze tekst de nadruk gelegd op de toepassing in de metaaltechniek. In de metaalsector wordt lassen veelvuldig toegepast wanneer de verbinding niet uitneembaar moet zijn. Metaal kan men over het algemeen beter aan elkaar lassen dan lijmen. Ook is een lasverbinding vaak veel effectiever dan een verbinding die doormiddel van solderen tot stand komt.

Ferro of non-ferro
Lasverbindingen worden in de metaalsector toegepast bij verschillende metaalsoorten. Deze metaalsoorten worden onderverdeeld in ferro en non-ferro. Bij ferro-metalen en legeringen bestaat het hoofdbestandsdeel uit ijzer wat gevoelig is voor corrosie of roest. Een voorbeeld hiervan is koolstofstaal dat veel wordt gebruikt in de staalconstructie vanwege de stevigheid en verhoudingsgewijs gunstige prijs. Bij ferro-metaal en legeringen maakt men over het algemeen gebruik van actief gas.

Non-ferro metalen zijn minder gevoelig voor corrosie of hebben een oxidelaag die het onderliggende materiaal goed beschermd zoals bij zink en aluminium het geval is. Soms zegt men dat non-ferrometalen edeler zijn dan ferro-metalen maar dat is niet altijd het geval. Zo staat zink in het periodiek systeem der elementen lager dan ferro terwijl zink toch veel beter bestand is tegen corrosie. Denk hierbij aan het verzinken van staal waarbij het zinklaagje het onderliggende staal beschermd tegen roest.

Non-ferro metalen worden ook wel inerte metalen genoemd en worden daarom gelast met een inert beschermgas of backinggas. Een aantal voorbeelden van Non-ferro metalen zijn aluminium, nikkel en zink. Sommige legeringen bevatten echter wel ijzer maar worden toch beschouwd als non-ferro zoals roestvaststaal dat ook wel bekend is onder de afkorting rvs. Het materiaal dat gelast wordt noemt men ook wel uitgangsmateriaal en bepaald in belangrijke mate welk lastoevoegmateriaal gebruikt kan worden. Het spreekt voor zich dat men voor inert uitgangsmetaal ook een inert lastoevoegmateriaal (lasdraad) gebruikt.

Lasposities
Een las kan in verschillende posities worden aangebracht. Daarbij kan men bijvoorbeeld denken aan onder de hand lassen maar ook recht omhoog lassen wat ook wel stapelen wordt genoemd. Andere posities zijn uit de zij lassen en boven het hoofd lassen. Dit zijn verschillende lasposities en verschillen ook in complexiteit. Zo is boven het hoofd lassen veel moeilijker dan onder de hand lassen.

MLT en IWT
De hiervoor genoemde alinea’s beschrijven algemene informatie die een lasser moet weten om een goede lasverbinding te kunnen maken. Gelukkig hoeft een lasser op theoretisch vlak niet alles te weten. Daarvoor zijn lasspecialisten oftewel lastechnici. Deze specialisten hebben veel kennis van lastechniek en hebben vaak een opleiding Middelbaar Lastechnicus gevolgd. Deze opleiding wordt ook wel afgekort met MLT. Ook de opleiding IWT is mogelijk, dit staat voor International Welding Technologist. In de praktijk heeft men het ook wel over een IWT-er of een MLT-er. Deze specialisten kunnen een lasmethodebeschrijving opstellen of een welding procedure specification. Daarover lees je in de volgende alinea meer

Lasmethodebeschrijving of welding procedure specification
Lassers moeten weten hoe een lasverbinding tot stand moet worden gebracht. Vooral bij complexere werkstukken van hoogwaardige legeringen is het belangrijk dat een lasser precies weet wat er van hem of haar verwacht wordt. Dat is overigens ook het geval bij constructies die worden gemaakt voor de bouw en offshore waarbij een lasser een uitstekende lasverbinding moet leggen omdat er anders grote gevaren kunnen ontstaan met betrekking tot de constructieve stevigheid van producten en constructies.

Bij dergelijke laswerkzaamheden wordt gebruik gemaakt van een welding procedure specification (wps) of een lasmethodebeschrijving (lmb). Deze duidelijke omschrijvingen zijn meestal opgesteld door een International Welding Technologist of een Middelbaar Lastechnicus. In een lasmethodebeschrijving of welding procedure specification staat informatie over het lastproces dat gehanteerd moet worden door de lasser maar ook het lastoevoegmateriaal, het beschermgas en de laspositie die de lasser moet hanteren voor het maken van de lasverbinding. In de praktijk zullen lassers voor het maken van dergelijke lasverbindingen ook persoonlijk gecertificeerd moeten worden. Dit houdt in dat de lasser een lascertificaat moet behalen die gekoppeld is aan zijn of haar naam.

Lasvaardigheid leren
Uit de alinea’s hierboven komt naar voren dat het maken van een lasverbinding niet eenvoudig is. Er is behoorlijk wat theoretische kennis voor nodig om een goede lasverbinding te maken. Het leren van lasvaardigheid is vooral een kwestie van toepassen. Dat houdt in dat men zelf regelmatig moet oefenen met lassen. Dan leert men namelijk een goed smeltbad maken en leert men ook wat het effect is van warmte op metaal. Er ontstaat namelijk krimp en rek in een werkstuk als men bepaalde gedeelten verwarmt en andere gedeelten niet verwarmt. Het lassen is namelijk vooral het lokaal verhitten van het werkstuk.

Een lasser kan echter ook een gedeelte van het werkstuk voorgloeien. Ook dit is beschreven in de lasmethodebeschrijving of welding procedure specification. Lassers zijn vooral praktijkmensen en daarom is het verstandig om met collega-lassers informatie uit te wisselen over hoe een lasverbinding gemaakt kan worden. Veel lassers hebben door jaren ervaring zichzelf truckjes aangeleerd met betrekking tot het vasthouden van de lastoorts en het instellen van het lasapparaat. Lassen is wat dat betreft echt een beroep dat je in de praktijk moet leren. Veel lassers hebben thuis ook een lastoestel staan waardoor ze ook thuis hun lasniveau op peil kunnen houden.

Uiteraard is het verstandig om een lasopleiding te volgen bij een opleidingsinstituut dat goed bekend staat. Veel technische mbo-scholen bieden lasopleidingen aan. Daarnaast heeft ook het Nederlands Instituut voor Lastechnieken (NIL) veel informatie over lastechniek. Lasopleidingen  die erkend zijn door het NIL hebben meerwaarde op de arbeidsmarkt.

Veiligheid en lassen
Lassen is overigens een beroep met risico’s. Tijdens het lassen maakt men gebruik van hoge temperaturen waardoor er een risico is op brand. Daarnaast wordt tijdens het lassen ook een zeer schadelijk UV-licht geproduceerd waartegen de ogen beschermd moeten worden. Lassers moeten in de praktijk altijd de voorschreven persoonlijke beschermingsmiddelen dragen. Dit houdt in dat ze een vlamvertragende lasoverall moeten dragen en een lashelm. De lasdampen moeten worden afgezogen doormiddel van een goed ventilatiesysteem of een lasdampafzuiginstallatie.

Veiligheidsinstructie en personeelsinstructieformulier
Lassers moeten daarnaast ook andere materialen zoals slijptollen en slijpmachines gebruiken conform de veiligheidsvoorschriften. Bedrijven zijn volgens de arbowetgeving verplicht hun werknemers te wijzen op veilig en verantwoord werken. Uitzendbureaus die lassers als uitzendkracht bemiddelen moeten de doorgeleidingsplicht hanteren. Dit houdt in dat deze uitzendbureaus bij de opdrachtgever de veiligheidsvoorschriften en de risico’s op de werkvloer moeten opvragen en doorgeven aan de uitzendkrachten die als lasser gaan werken. Op die manier worden lassers voor de aanvang van de werkzaamheden op de hoogte gebracht van de veiligheidsrisico’s die aan het laswerk verbonden zijn en de manier waarop de veiligheidsrisico’s beperkt kunnen worden. Dit gebeurd onder andere door een personeelsinstructieformulier die veel VCU gecertificeerde uitzendbureaus hanteren.

 

Wat is metaalkunde en wat doet een metaalkundige?

Metaalkunde is gericht op het besturen van metalen en het onderzoeken van de toepassingen daarvan. Het vakgebied metaalkunde is nauw verbonden met metaaltechniek en de werktuigbouwkunde. In de metaalkunde is onderscheid gemaakt tussen het bestuderen van ferro en non-ferrometalen en legeringen. Ferro (is het Latijnse woord voor ijzer), metalen die bij de ferrogroep horen, hebben als hoofdbestandsdeel ijzer. Non-ferrometalen zijn over het algemeen minder corrosiegevoelig. Een metaalkundige houdt zich bezig met eigenschappen van metalen en onderzoekt deze nauwkeurig. Hieronder is een alinea weergegeven waarin beschreven is wat onder metaalkunde valt.

Waaruit bestaat metaalkunde?
Het onderzoeken van metalen is een breed vakgebied. Metalen kunnen verschillende eigenschappen hebben. Wanneer een metaalkundige alle metalen moet onderzoeken op alle eigenschappen staat deze voor een onmogelijke opdracht. Daarom wordt metaalkunde onderverdeeld in verschillende deelgebieden. Omdat een metaalkundige een specialist is kan hij of zij zich specifiek toeleggen op één of enkele deelgebieden die onder de metaalkunde vallen. Hieronder staan een aantal deelgebieden waaruit metaalkunde bestaat:

  • Lastechniek. Hierin wordt aandacht besteed aan de mogelijkheid om bepaalde metalen te lassen en wat de reactie van metalen zijn bij een bepaalde lastechniek. De doelstelling is hierbij om de juiste lastechniek voor een metaalsoort in kaart te brengen.
  • Metallurgie. Dit deelgebied van metaaltechniek is gericht op het onderzoeken van metalen om daarmee hun bestandsdelen en onderlinge samenhang, dichtheid en massa vast te stellen. Dit kan tot op microscopisch niveau gebeuren. Iemand die werkzaam is in de metallurgie wordt ook wel een metallurg genoemd.
  • Metallografie. Metalen hebben verschillende structuren die in het deelgebied metallografie in kaart worden gebracht. Metallografie is daardoor de structuurbeschrijving van metalen. Doormiddel van deze structuurbeschrijving kan de sterkte van metalen in kaart worden gebracht.
  • Gieterijkunde. Dit deelgebied van metaalkunde is gericht op de eigenschappen van metaal die invloed hebben op het vloeibaar maken en het gieten van metaal. Niet elke metaalsoort kan eenvoudig gegoten worden. Daarnaast zorgt ook de afkoeling van gegoten metaal vaak voor een krimp. Bij gieterijkunde wordt aandacht besteed aan de eigenschappen van metalen die van belang zijn bij het gieten. Voorbeelden van metalen en metaallegringen die gegoten worden zijn gietijzer, gietstaal en brons.
  • Corrosieleer. De meeste metalen hebben een bepaald corrosieproces. Dit proces ontstaat door elektrochemische reacties. Corrosie zorgt er voor dat de kwaliteit van het metaal kan worden aangetast maar dat hoeft niet. In corrosieleer wordt aandacht besteed aan de gevolgen voor de structuur en sterkte van metalen wanneer corrosie optreed.
  • Plastische vormgeving. Hierbij wordt aandacht besteed aan de vervormbaarheid van metalen.
  • Vermoeiing. Dit wordt ook wel fatigue genoemd. Wanneer metalen voortdurend belast worden kan de structuur van het metaal worden aangetast. Dit gebeurd zowel bij langdurige belasting als bij kort durende belasting die regelmatig voorkomt. Vermoeiing van metalen wordt ook wel metaalmoeheid genoemd. Het heeft gevolgen voor de mechanische sterkte van een constructie, werktuig of voertuig.

Een metaalkundige kan zich met één of meerdere van bovengenoemde deelgebieden bezighouden. De taken die een metaalkundige hierbij kan uitvoeren zijn in de volgende alinea beschreven.

Wat doet een metaalkundige?
Metaalkunde is voornamelijk gericht op het onderzoeken van metalen. Daarbij wordt met name gekeken naar de geschiktheid van metalen voor bepaalde toepassingen. Een metaalkundige kan hierbij de kwaliteit en eigenschappen van metalen onderling met elkaar vergelijken. Daarnaast kan een metaalkundige deze eigenschappen vergelijken met bijvoorbeeld kunststoffen, houtsoorten, steensoorten en andere materialen. Een metaalkundige maakt rapporten over de metalen die onderzocht zijn. Daarnaast kan een metaalkundige op basis van deze gegevens ook nieuwe methodes bedenken om metaal te gieten. Het in kaart brengen van eigenschappen van metalen zorgt er daarnaast voor dat een metaalkundige verschillende legeringen kan bedenken waardoor de eigenschappen van metalen elkaar versterken. Een metaalkundige kan daardoor bij verschillende bedrijven werken.

Waar werkt een metaalkundige?
Metaalkundigen zijn er niet veel in Nederland. Er zijn maar weinig opleidingen in Nederland die op HBO en Universitair niveau aandacht besteden aan het onderzoeken van de kwaliteiten van metalen. Dit is jammer want metalen worden in de techniek vrijwel overal toegepast. Het is belangrijk dat van te voren goed in kaart wordt gebracht wat de eigenschappen van de metalen zijn. De beoogde toepassing of het toepassingsgebied van metalen is hierbij van groot belang. Metalen worden onder andere toegepast in staalconstructie en de machinebouw. Ook worden metalen toegepast voor de vervaardiging van auto’s, treinen, bussen, tractoren en andere voertuigen. Binnen de scheepsbouw, jachtbouw, luchtvaarttechniek en de ruimtevaart wordt ook gebruik gemaakt van metalen. Een metaalkundige kan daardoor in verschillende bedrijven werkzaam zijn.

Wat zijn ferrometalen en nonferrometalen?

Metalen kunnen op verschillende manieren worden onderverdeeld. Hierbij kan gekeken worden naar de eigenschappen van de metalen en de toepasbaarheid ervan. In de praktijk komt de verdeling tussen ferrometalen en nonferrometalen veel voor. Deze onderverdeling is gebaseerd op het al dan niet aanwezig zijn van het bestandsdeel ijzer.

Wat is Ferro?
IJzer is een element uit de scheikunde. In het Latijns wordt ijzer ferrum genoemd. Daarvan is het woord ferro afgeleid. Ferro wordt in de scheikunde aangeduid met het symbool Fe wat staat voor de eerste twee letters van Ferrum. IJzer is een grijskleurig metaal met atoomnummer 26. Het wordt veel toegepast binnen de werktuigbouwkunde maar ook binnen andere technische vakgebieden. Meestal wordt ijzer gelegeerd met andere elementen zoals met koolstof (C). Wanneer aan ijzer 0,1 tot 1,7 procent koolstof wordt toegevoegd spreekt men van staal. Metalen die onder Ferro vallen zijn magnetisch en bevatten minimaal 50 procent ijzer.

Wat is Nonferro?
Nonferro metalen bevatten geen ijzer. Wanneer nonferro metalen worden gelegeerd mag het percentage ijzer dat wordt toegevoegd niet hoger zijn dan 50 procent om de legering onder nonferro te laten behoren. De metalen die onder nonferro vallen zijn divers. Een aantal voorbeelden van nonferrometalen zijn: koper, zink, chroom, goud, zilver, tin, aluminium en titaan. Omdat er zoveel metalen onder nonferro vallen wordt er vaak een onderverdeling gemaakt. De onderverdeling tussen pure metalen en  non-ferrometaallegeringen is gebruikelijk.

Onder pure metalen vallen de volgende categorieën:

  • Edelmetalen: deze metalen worden nauwelijks door oxidatie aangetast. Voorbeelden hiervan zijn goud en platina. Ook zilver valt onder edelmetalen hoewel het iets meer gevoelig is voor oxidatie.
  • Zware metalen: deze hebben een hoge atoommassa en zijn zwaarder dan ijzer. Voorbeelden hiervan zijn: kwik, lood en cadmium.
  • Lichte metalen: dit zijn metalen die lichter zijn dan ijzer bijvoorbeeld aluminium.

Onder non-ferrometaallegeringen vallen de volgende categorieën:

  • Gegoten legeringen zoals bijvoorbeeld brons.
  • Gesmede legeringen dit zijn legeringen die doormiddel van een smeden zijn ontstaan.

Binnen de werktuigbouwkunde wordt gebruik gemaakt van ferrometalen en nonferrometalen. De eigenschappen van metalen lopen sterk uiteen. Doormiddel van legeringen kunnen de eigenschappen van metalen worden gecombineerd. Legeringen worden in de praktijk zeer veel gebruikt.

Wat zijn de verschillen en overeenkomsten tussen staal, ijzer en metaal?

Dit artikel gaat over de verschillen en overeenkomsten tussen staal, ijzer en metaal. Deze materialen worden onder andere genoemd in de werktuigbouwkunde. Het is belangrijk om de eigenschappen van deze materialen te kennen omdat ze daardoor effectief kunnen worden toegepast in bijvoorbeeld een constructies, machines en voertuigen. Elk materiaal heeft eigenschappen die het uniek maken. De eigenschappen waar vooral op wordt gelet zijn de sterkte, de taaiheid, de bewerkbaarheid en de smeedbaarheid van een materiaal. Deze eigenschappen zijn unieke kenmerken voor materialen en bepalen of een materiaal wel of niet geschikt is voor een bepaalde toepassing. Hieronder worden de materialen ijzer, staal en metaal uitgelegd.

Wat is IJzer?
IJzer is een metaalsoort en wordt als element aangeduid met Fe dit staat voor Ferro. IJzer valt onder de metalen net zoals bijvoorbeeld koper, goud, zilver en tin metalen zijn. IJzer wordt gewonnen uit erts. Deze ijzererts kwam vroeger veel voor in Duitsland, Zweden, Engeland, Noord-Amerika en Rusland. Ook tegenwoordig wordt in die landen nog veel ijzererts gewonnen. Wanneer uit ijzererts de verontreiniging zoals kalksteen, leem, zand en mergel zijn verwijdert ontstaat ruwijzer. Dit ruwijzer is afkomstig uit hoogovens en bevat 3 tot 4,5 procent koolstof. Dit hoge koolstofpercentage zorgt er voor dat het ruwijzer nog heel bros  is en daardoor geen goede mechanische eigenschappen heeft om het in constructies te verwerken. Daarnaast bevat ruwijzer ook andere elementen zoals zwavel, fosfor en silicium. Om de mechanische eigenschappen van ruwijzer te verbeteren moet het koolstofpercentage omlaag worden gebracht. Wanneer het koolstofpercentage tussen de 0,1 en 1,7 procent is worden de eigenschappen van het materiaal aanzienlijk verbeterd en ontstaat staal.

Wat is staal?
Staal is ijzer met een toevoeging van 0,1 tot 1,7 procent koolstof. Het is daardoor een legering tussen IJzer (Fe) en koolstof (C). Staal kan ook andere elementen bevatten maar het hoofdbestandsdeel blijft ijzer. De reden waarom soms andere elementen worden toe gevoegd heeft te maken met het toepassingsgebied van het materiaal. Doormiddel van legeringen kan de kwaliteit van staal worden beïnvloed. Ook thermische behandelingen kunnen er voor zorgen dat de eigenschappen van staal worden beïnvloed. Doormiddel van thermisch ‘harden’ kan de slijtvastheid en daarmee de hardheid van een legering worden verbeterd. Dit is een proces waarbij staal (of ander metaal of legering) eerst wordt verhit en vervolgens wordt afgekoeld (temperen). Doormiddel van deze behandelingen kunnen de mechanische eigenschappen van staal worden aangepast aan de eisen die aan het product, dat er mee vervaardigd moet worden, zijn gesteld. De eigenschappen die staal heeft zijn goed op het gebied van sterkte, taaiheid en smeedbaarheid.

Wat is metaal?
Metaal is een verzamelnaam voor elementen die overeenkomsten met elkaar hebben. Zo geleiden metalen en legeringen die gemaakt zijn van metaal, elektrische stroom uitstekend. Metalen worden ingedeeld in twee groepen: de ferrometalen en de non-ferrometalen. De naam van deze indeling maakt duidelijk dat ferrometalen als belangrijk bestandsdeel ferro hebben oftewel ijzer (Fe) . Non-ferrometalen hebben ijzer niet als bestandsdeel. In een nonferro legering kan wel ijzer worden toegevoerd. Alleen wanneer het percentage ijzer lager is dan 50 procent blijft men van een nonferro legering spreken. Wanneer we metalen onderverdelen in deze twee groepen ontstaat het onderstaande overzicht.

Ferrometalen hoofdbestandsdeel ijzer
IJzer en legeringen die bestaan uit minimaal 50% ijzer. Daarnaast zijn deze magnetisch. Bijvoorbeeld:

  • Gietijzer
  • Kobalt
  • Nikkel
  • Staal (bijvoorbeeld constructiestaal en gereedschapstaal)

Nonferrometalen bevatten geen of nauwelijks ijzer
Non-ferrometalen bestaan uit minder dan 50% ijzer. Daarnaast zijn deze metalen niet magnetisch. Deze groep bevat in feite alle metalen die niet onder de ferrometalen vallen. Hieronder worden een aantal voorbeelden gegeven:

  • Koper
  • Chroom
  • Zink
  • Tin
  • Aluminium
  • Magnesium
  • Titaan
  • Goud
  • Zilver

Toepassing van metalen
Hierboven werd duidelijk dat ijzer het hoofdbestandsdeel is van staal. De toevoeging van 0,1 tot 1,7 procent koolstof aan ijzer zorgt er voor dat de kwaliteit wordt verbeterd en er staal ontstaat. De toepassing van staal is breed. Hieronder volgen een aantal voorbeelden van vervoersmiddelen, producten en constructies waarin staal kan worden gebruikt:

  • Spoorlijnen
  • Bruggen
  • Loodsen
  • Auto’s
  • Vrachtschepen
  • Kranen
  • Boorplatformen

Deze opsomming kan enorm worden uitgebreid. Bijna overal wordt staal gebruikt. Ook nonferro metalen worden toegepast in verschillende constructies. Hierbij moet goed gekeken worden naar de eigenschappen van het materiaal. Vaak worden er legeringen gemaakt om tot een optimale mix te komen van eigenschappen. Brons is een voorbeeld van een legering tussen koper en tin. Door deze combinatie kan brons worden gegoten. Brons gieten wordt al heel lang gedaan, nog voor het gebruik van ijzer zijn intrede deed in de menselijke beschaving.

Aluminium is een materiaal wat in verhouding tot staal weinig weegt. Daardoor is het geschikt voor constructies die niet te veel mogen wegen zoals bijvoorbeeld vliegtuigen. Ook voor de bouw van jachten wordt aluminium gebruikt. Het winnen van aluminium uit Bauxiet kost echter zeer veel energie waardoor de aluminiumproductie kostbaar en milieubelastend is. Zo heeft elke metaalsoort zijn toepassingsgebied. Kennis van metalen en hun eigenschappen vormt daardoor een belangrijk onderdeel van de werktuigbouwkunde.