Waarom mag je plasma beeldschermen niet horizontaal of plat neerleggen?

Een plasmascherm is een soort beeldscherm dat wordt gebruikt voor het weergeven van bewegende beelden in kleur. Plasmaschermen worden met name toegepast in televisiebeeldschermen. Een plasmascherm wordt zo genoemd op basis van de techniek die voor deze beeldschermen wordt gebruikt. Een plasmascherm bestaat uit een groot aantal kleine cellen die gevuld zijn met gassen. Deze gassen kunnen door een elektrische lading gaan ioniseren. Het gas wordt na het ioniseren ook wel plasma genoemd. Vaak geeft men bij de verkoop van een plasmascherm of plasmatelevisie aan dat deze niet plat mag worden neergelegd. In de volgende alinea kun je lezen waarom.

Waarom een plasmascherm niet plat vervoerd mag worden
Tussen de glazen platen van een plasmabeeldscherm zitten kleine gasbelletjes. Deze gasbelletjes zijn noodzakelijk voor de werking van het plasmascherm. Wanneer het plasmascherm echter plat wordt neergelegd gaan de plasmabelletjes zich verplaatsen. Deze verschuiven naar het midden van het beeldscherm waardoor de levensduur van het plasmascherm aanzienlijk wordt verkort.

Garantie op plasmaschermen
Fabrikanten geven geen garantie op plasmabeeldschermen wanneer deze plat zijn vervoerd of op een ander moment plat zijn neergelegd. Om dit te controleren plaatsen fabrikanten vaak een chip in de plasmabeeldschermen. Deze chip reageert en registreert wanneer het beeldscherm toch horizontaal is neergelegd. Als het beeldscherm bij de fabrikant wordt teruggebracht vanwege een defect dan vervalt de garantie wanneer de chip inderdaad heeft geregistreerd dat het beeldscherm horizontaal is neergelegd. Overigens kan een plasmascherm ook door trillingen en druk van buitenaf defect raken of minder goed functioneren. Een plasmascherm blijft kwetsbaar.

Vervoer van plasmaschermen
Voor het behoud van de garantie en de levensduur van het plasmascherm is het dus van groot belang dat deze rechtop vervoerd wordt. Ook in de auto dient dit te gebeuren. Het probleem is echter dat je niet goed kunt nagaan hoe men in de winkel en bij de groothandel is omgegaan met het plasmascherm. Het is goed mogelijk dat men eerder het scherm toch horizontaal heeft neergelegd en dat de chip dit heeft geregistreerd. Daardoor kun je toch een ondeugdelijk plasmascherm hebben gekocht zonder dat je dat zelf kunt nagaan.

Wat is een plasmasnijmachine en wat is plasmasnijden?

Plasmasnijden is een bewerkingstechniek die onder andere in de metaalbewerking wordt toegepast. Plasmasnijden is een proces dat met name wordt gebruikt voor het snijden van vormen uit plaatmateriaal. Dit gebeurd doormiddel van een plasmasnijmachine. De plasmasnijmachine maakt gebruik van plasma. Dit plasma wordt met een elektrische vlamboog opgewekt. Het plasmasnijden komt voort uit het plasmalassen, dit lasproces wordt ook wel het TIG lassen genoemd. Het plasmasnijden ontstond rond 1963. Het plasmasnijden zorgde voor fraaiere resultaten dan het snijdbranden dat tot die tijd veelvuldig werd gebruikt voor het snijden van metaal. Bij plasmasnijden zijn de snedes gladder en nauwkeuriger dan de snedes die ontstaan bij snijbranden. Er ontstaan bovendien geen staalsplinters tijdens het plasmasnijden.

Een plasmasnijmachine is een ander apparaat dan een lasersnijmachine. Als men met een plasmasnijmachine een snede maakt dan is de bovenkant afgerond. Hierdoor zal men voor het afwerken nog nabewerking moeten uitvoeren. Dit is niet het geval bij producten die door een lasersnijmachine zijn gemaakt.

Waaruit bestaat een plasmasnijmachine?
Een plasmasnijmachine bestaat uit een aantal delen. Allereerst krijgt de machine haar elektrische voeding uit een stroombron. Daarnaast is er een massakabel en een stroomtoevoerdraad. Verder is er een persleiding in de machine geplaatst. Er wordt gebruik gemaakt van een inert gas of perslucht. De vlamboog wordt ontstoken door een hoogfrequent ontsteking. De machine bevat een koperen geïsoleerd en watergekoeld mondstuk. Hierin is een wolfraamelektrode geplaatst. Moderne plasmasnijders zijn uitgerust met een computersysteem waardoor men doormiddel van programmering de plasmasnijder de gewenste bewerking kan laten uitvoeren. Plasmasnijders die uitgerust zijn met een dergelijk systeem noemt men ook wel CNC- plasmasnijmachines. Hierbij staat de afkorting CNC voor Computer Numerical Control. Uiteraard is de gehele plasmasnijmachine in een stevig stalen frame gebouwd dat meestal voorzien is van een snijdtafel. Het mondstuk met de elektrode beweegt zich boven de plaat die op de snijdtafel licht. Daarvoor is het mondstuk meestal aan een beweegbare arm gemonteerd. De positionering van dit mondstuk gebeurd door het CNC-programma.

Hoe werkt een plasmasnijmachine?
Nadat de operator de plasmasnijmachine heeft geprogrammeerd in het CNC-programma wordt er via een persleiding een inert gas of perslucht met een hoge snelheid door het mondstuk gespoten. Tussen de wolfraamelektrode en het werkstuk wordt doormiddel van elektrische stroom een vlamboog opgewerkt. Hierbij wordt gebruik gemaakt van een hoogfrequent ontsteking.

Door deze vlamboog wordt een deel van het gas omgezet in plasma. Dit plasma wordt zeer heet, wel 30.000 °C en wordt door het mondstuk in een staal veranderd. De hoge temperatuur zorgt er voor dat het metaal waarop de elektrode is geplaatst wordt gesmolten. De perslucht en de hoge temperatuur zorgen er voor dat de metaaldeeltjes die gesmolten zijn worden weggeblazen. Zo ontstaat een snede in het metaal. Dit kan met een behoorlijke snelheid uitgevoerd worden.

Het mondstuk waar de elektrode in zit moet natuurlijk tijdens het proces niet gaan smelten. Daarom is het mondstuk geïsoleerd en wordt het mondstuk bovendien met water gekoeld.

Wat is plasmalassen en hoe wordt dit lasproces uitgevoerd?

Plasmalassen is een lasmethode die verwant is met TIG-lassen. Bij plasmalassen wordt gebruik gemaakt van plasma. Dit is ook het geval bij TIG lassen. Het vormen van plasma gebeurd door het creëren van een hoge elektrische spanning tussen een wolfraamelektrode en het werkstuk. Hierbij wordt gebruik gemaakt van  twee aparte gastromen: het plasmagas en een inert beschermgas. Het plasmagas stroomt rond de wolfraamelektrode richting het werkstuk. Het potentiaalverschil tussen de wolfraamelektrode en het werkstuk zorgt er voor dat het plasmagas elektriciteit geleid. Deze elektrische geleiding zorgt er voor dat er een plasmaboog ontstaat tussen het werkstuk en de elektrode. Het beschermgas zorgt er voor dat het smeltbad tijdens het lassen wordt beschermt tegen invloeden van buitenaf.

Verschil tussen plasmalassen en gewoon TIG-lassen
In tegenstelling tot het gewone TIG-lassen blijft de wolfraamelektrode dieper in de lastoorts verborgen. Bij het gewone TIG-lassen steekt de wolfraamelektrode enkele millimeters uit de lastoorts. De vorm van het mondstuk dat bij plasmalassen worden gebruikt is anders dan bij TIG-lassen. Het plasmagas wordt met hoge snelheid uit de lastoorts geblazen. Dit zorgt er voor dat de plasmabundel goed kan worden ingesnoerd. Het insnoeren van de plasmabundel zorgt er voor dat er veel hogere temperaturen bereikt kunnen worden dan met gewoon TIG-lassen het geval is. doormiddel van plasmalassen kan een temperatuur worden behaald die oploopt tot wel 24000 graden. Rondom het plasmagas wordt een apart beschermgas geblazen tijdens het lassen. Dit beschermgas draagt er onder andere aan bij dat de plasmabundel tijdens het lassen zeer smal gehouden kan worden. Daarnaast zorgt het beschermgas er voor dat het werkstuk beschermd is tegen invloeden zoals zuurstof. Bij TIG-lassen wordt de koeling van het mondstuk gedaan door het beschermgas. Vanwege de hoge temperaturen is dat bij plasmalassen niet voldoende. Daarom wordt bij plasmalassen het mondstuk van de lastoorts ook met water gekoeld.

Verschillende varianten van plasmalassen
Net als andere lasprocessen zoals het MIG/MAG lasproces kan ook plasmalassen op verschillende manieren worden uitgevoerd. Dit heeft onder andere te maken met de materiaaldikte of plaatdikte van het werkstuk. Ook de eisen met betrekking tot nauwkeurigheid zijn van invloed op de keuze voor een bepaalde variant van plasmalassen. Hieronder staan de drie verschillende varianten van plasmalassen.

  • Microplasmalassen, tot 15 A. Deze variant van plasmalassen wordt gebruikt voor het maken van een lasverbinding in werkstukken die vervaardigd moeten worden van zeer dunne plaat. Er wordt hierbij gebruik gemaakt van zeer dunne draden vanaf 0,1 millimeter dikte.
  • Melt-in plasmalassen, 15 tot 200 A. Deze variant van plasmalassen is gelijkwaardig aan het TIG-lassen.  Melt-in plasmalassen heeft echter een maar een stabielere boog en daarnaast een diepere inbranding.
  • Keyhole plasmalassen, boven 100 A. Deze variant van plasmalassen zorgt voor een grote en diepe inbranding. Daarnaast kan met deze lasmethode een hoge lassnelheid worden gerealiseerd.