Wat is een tandriemaandrijving?

Een tandriemaandrijving is een aandrijfsysteem die op verschillende manieren in de techniek wordt gebruikt. Er wordt hierbij gebruik gemaakt van een aandrijfriem die is voorzien van speciale riemtanden. De getande riem loopt over in ieder geval twee riemschijven of poelies met buitenvertanding. Over deze riemschijven loopt een getande riem die is voorzien van binnenvertanding. Door deze vertanding slipt de riem niet meer over de riemschijven. Het slippen van aandrijfriemen komt bijvoorbeeld wel vaak voor bij gladde aandrijfriemen. Getande aandrijfriemen worden zowel in motoren gebruikt als voor de eindaandrijving.

Distributieriemen voor auto’s
In verbrandingsmotoren wordt een getande aandrijfriem gebruikt voor een zogenaamde synchrone aandrijving. Een synchrone aandrijving is een aandrijving met een vaste verhouding. Deze vaste verhouding mag nooit worden gewijzigd omdat anders de tanden van de aandrijfriem niet meer goed vallen binnen de tanden van de riemschijven. Een goed voorbeeld hiervan is de aandrijving van de nokkenas. Als de riem van een nokkenasaandrijving niet meer goed zou lopen over de riemschrijven of zou slippen dan gaan de kleppen van de motor niet meer op het gewenste moment open en dicht.

Daardoor wijzigt ook het tijdstip van de ontsteking. Een tandriemaandrijving wordt hierbij gebruikt als een effectieve overbrenging in plaats van een tandwielaandrijving of een kettingaandrijving. Deze laatste twee systemen hebben smering nodig om een vastloper te voorkomen. Als men gebruik maakt van een kettingaandrijving of een tandwielaandrijving zal men deze in een afgesloten deel van de motor moeten plaatsen, namelijk het distributiecarter. Dit hoeft bij een distributieriem niet.  Men dient echter distributieriemen tijdig vervangen. Als men dit niet doet kan de riem breken en zorgt dit er voor dat de inlaatkleppen of uitlaatkleppen stil komen te staan. De krukas blijft dan echter nog draaien. Daardoor blijven de zuigers, die doormiddel van de zuigerstangen aan de krukas verbonden zijn, ook op en neer gaan. Deze zuigers kunnen in die beweging de kleppen raken waardoor er zeer veel schade aan de motor kan worden veroorzaakt. Distributieriemen zijn echter maar een voorbeeld van een tandriemaandrijving.

Aandrijfriem voor motoren
Men kan ook een tandriemaandrijving gebruiken in de vorm van een eindaandrijving. In dit geval vind de tandriemaandrijving plaats van versnellingsbak naar achterwiel. Zo wordt bijvoorbeeld bij motorfietsen bijvoorbeeld soms een tandriem toegepast. Bij motorfietsen wordt echter vaker een metalen ketting toegepast of een zogenaamde cardanaandrijving. Ondanks dat wordt het gebruikt van een aandrijfriem populairder bij motoren omdat deze aandrijfriem veel minder onderhoud vereist dan bijvoorbeeld een aandrijfketting. Er worden bijvoorbeeld aandrijfriemen gebruikt bij een aantal modellen van Harley-Davidson, BMW, Kawasaki en Suzuki. Er zijn ook motormerken die gebruik maken van een getande riem om de nokkenas aan te drijven. Dit zijn bijvoorbeeld de motormerken Rotax en Ducata.

Wat is een stationaire motor?

Een stationaire motor is een motor die op een vaste plaats is geplaatst en die men gebruikt als aandrijving voor bijvoorbeeld een machine. Een stationaire motor is niet in een voertuig gebouwd en drijft daardoor geen voertuig aan zoals bijvoorbeeld een dieselmotor of benzinemotor in een auto wel doet. In plaats daarvan is een stationaire motor meestal aan de grond bevestigd. Er zijn echter ook verplaatsbare motoraandrijvingen die worden gebruikt als aandrijfmechanisme voor bijvoorbeeld machines, deze worden ook wel tractiemachines of locomobielen genoemd. Deze verplaatsbare motoraandrijvingen worden dus gebruikt als externe aandrijving voor machines, de aandrijving zelf wordt niet gebruikt voor de verplaatsing van de motoraandrijving.

Stoommachines
Toen de stoommachine werd ontworpen en in 1780 werd verbeterd was de stoommachine zover ontwikkeld dat deze ook in de fabrieken als aandrijving kon worden gebruikt. Dat was een belangrijke impuls voor de industriële revolutie. Voor veel machines werd stoomkracht gebruikt als aandrijving. Deze stoomkracht werd geleverd door stationaire stoommachines die machines aandreven met platte riemen. Deze machines werden later vervangen door interne verbrandingsmotoren. Lenoir ontwierp een interne verbrandingsmotor maar dit was een atmosferische motor en die had een veel te laag rendement.

Ottomotor
Nicolaus August Otto en Eugen Langen ontwikkelden ook een motor. In circa 1876 door Nikolaus Otto de viertakt motor uitgevonden. Deze mengselmotor werd ook wel ottomotor genoemd. in eerste instantie werden deze motoren onder de naam Otto gefabriceerd. Vanaf 1900 werden de motoren geproduceerd onder Deutz. Na de ontwikkeling van de ottomotor werden er verschillende interne verbrandingsmotoren op de markt gebracht. Deze verbrandingsmotoren werden af en toe ook onder licentie gebouwd maar werden ook vaak door ingenieurs of door een lokale smid zelf ontworpen en gemaakt. Naast Nikolaus Otto zijn er ook andere motorenbouwers geweest die een viertakt motor hebben gebouwd. Een aantal van deze bouwers gaf aan dat ze eerder dan Nikolaus Otto een viertaktmotor hadden uitgevonden.

Ontstekingsmethoden
De eerste stationaire motoren hadden verschillende ontstekingsmethoden. Zo waren er motoren ontwikkeld die tot ontsteking kwamen doormiddel van een vlamschuif, een gloeibuis of een mechanische bougie. Over de gehele wereld zijn er veel verschillende verzamelaars van deze verschillende typen stationaire motoren. Tegenwoordig wordt het brandstofmengsel in deze verbrandingsmotoren tot ontsteking gebracht door middel van een bougie.

Dieselmotor
In 1893 werd door Rudolf Diesel een hogedrukmotor getoond. Bij deze motor werd de brandstof direct in de motor gespoten. Door de compressie van deze brandstof in de cilinders kwam de brandstof tot ontsteking. Dit komt door de warmte die door de compressie van de dieselbrandstof in de compressieruimte. Dit zorgt voor zelfontbranding. Het cetaangetal van de brandstof is hierbij van belang. Met het cetaangetal wordt duidelijk gemaakt in welke mate een brandstof tot zelfontbranding komt bij compressie. De interne verbrandingsmotoren werden veel populairder dan de stoommachines die in het verleden werden gebruikt. In de landbouwmechanisatie werden deze verbrandingsmotoren onder andere gebruikt om landbouwmachines zoals dorsmachines aan te drijven.

Einde van de interne verbrandingsmotoren
De interne verbrandingsmotoren werden steeds populairder, ze werden gebruikt in de landbouw en in de industrie. De verbrandingsmotoren waren eenvoudiger in gebruik dan de stoommachines waarbij een brandstof eerst werd omgezet in stoom en de stoom werd gebruikt om een mechanische beweging te bewerkstelligen. In de jaren dertig van vorige eeuw werd elektriciteit steeds vaker als krachtbron gebruikt. In dat geval wordt er geen gebruik gemaakt van een brandstof die in de motor wordt verbrand maar wordt er gebruik gemaakt van een elektromotor. Deze elektromotor is aangesloten op het lichtnet (netstroom of krachtstroom) maar kan ook aangesloten zijn op een zware accu.

Deze motoren zijn nog eenvoudiger in gebruik dan een verbrandingsmotor. Vrijwel alle machines in fabrieken zijn tegenwoordig elektrisch aangedreven. Er zijn echter nog wel stationaire motoren in gebruik. Men vindt stationaire motoren nog wel op schepen en boten. Daarnaast is ook een nood-aggregaat een vorm van een stationaire motor. Deze stationaire motor zet een brandstof om in elektriciteit waardoor een ziekenhuis nog in gebruik kan blijven al de stroom uit is gevallen. Ook in ziekenhuizen, politiebureaus en andere locaties maakt men gebruik van nood-aggregaten om de rampzalige effecten van stroomuitval te beperken.

Wat is een carburateur of carburator?

Een carburateur wordt ook wel carburator genoemd en is een onderdeel van een verbrandingsmotor. De carburateur wordt gebruikt om de brandstof te vernevelen voordat de brandstof in de cilinders van de motor wordt gebracht. Door de verneveling ontstaat een mengsel van brandstof en lucht. Omdat men dit mengsel in de verbrandingsmotor aanbrengt heeft men het ook wel over mengselmotoren of een ottomotor. Moderne automotoren bevatten lang niet altijd meer een carburateur. In plaats daarvan is de carburator bijna altijd vervangen door een systeem met benzine inspuiting

Hoe ziet een carburateur er uit
Een carburateur bestaat uit een cilindrische vorm (buis) met aan een zijkant een cilindrische vorm (buis) met een kleinere diameter. Hierdoor ontstaat een T-vorm waarbij bij het deel met de kleinste diameter haaks staat op de rest. De T ligt echter op zijn kant. De carburateur bevat een luchtfilter aan de bovenkant van de grote buis, dit is tevens de bovenkant van de carburateu. Hier stroomt de lucht door langs de choke. Onder de choke is een vernauwing in de buis aanwezig.  Op dit punt is de kleine buis bevestigd.

Via de kleine buis, die haaks staat op de grote buis, wordt benzine binnen gebracht.  De benzine loopt langs een kogelkraan in een vlotterkamer met een vlotter waaraan een vlotterarm is bevestigd. Via een straalbuis stroomt de benzine door de druk van de vlotter in de grote buis op de plek waar de vernauwing in de buis aanwezig is.

Hoe werkt een carburator?
Als de zuiger van de motor omlaag gaat om nieuwe lucht aan te zuigen gedurende de aanzuigslag wordt de nieuwe lucht via de carburator aangetrokken. De carburator bevat echter een vernauwing wat er voor zorgt dat de lucht sneller gaat stromen als deze aangezogen worden. Door het zogenaamde venturi-effect wordt de druk lager. Dit zorgt er vervolgens weer voor dat er vanuit de kleine straalbuis benzine meegezogen kan worden. Deze benzine wordt vervolgens verneveld in de lucht. Door de sproeier en de kalibratie in het benzinekanaal kan men de verhouding van het mengsel van benzine en lucht veranderen. Een grotere sproeier vereist een groter gaatje voor het inbrengen van de benzine. Dit zorgt er voor dat er meer benzine wordt toegevoegd aan het mengsel. Doormiddel van de gasschuif en een gasnaald kan de hoeveelheid mengsel worden geregeld die aan de motor wordt toegevoerd.

Zoals aangegeven wordt in de carburateur een mengsel worden gemaakt van brandstof (benzine) en lucht. Daarom moet er dus ook lucht worden aangetrokken in de carburateur. Deze lucht komt binnen via een luchtinlaat. De invoer van lucht verloopt meestal via een luchtfilter. Door de zwaartekracht wordt er benzine aan de lucht toegevoegd als de brandstoftank boven de carburateur is gemonteerd. Men kan echter ook een elektrische brandstofpomp gebruiken of via de nokkenas een mechanisch aangedreven brandstofpomp. In tweetaktmotoren kan de benzine door een carter worden aangezogen. Hierbij wordt gebruik gemaakt van onderdruk. Hierbij maakt men gebruik van een membraanpomp. Het benzine-luchtmengsel van een carburateur van viertaktmotor wordt via het inlaatspruitstuk langs inlaatkleppen in de cilinders van de motor gebracht, om doormiddel van bougies in de cilinders te worden verbrand.

Wat wordt bedoelt met een vastloper in de techniek?

Vastloper is een woord dat wordt gebruikt in de techniek als een motor, werktuig of machine plotseling stopt met functioneren. Er zijn verschillende oorzaken die er voor zorgen dat machines en motoren vastlopen. Een voorbeeld hiervan is te weinig smering. Door te weinig smering kunnen bewegende machinedelen niet meer soepel draaien. De wrijving in de machine neemt toe waardoor er verhitting optreed. Deze verhitting zorgt er in combinatie met de wrijving voor dat de machine niet meer goed loopt en uiteindelijk vastloopt.

Daarom is koeling en smering belangrijk voor motoren en machines. Bij motoren kan bijvoorbeeld de zuiger van de motor zich vast zetten in de cilinderwand van de motor. De cilinder beweegt daardoor niet meer op en neer in het cilindergat. Daardoor komt de krukas van het voertuig niet meer in beweging en staat het voertuig stil. Een vastloper zorgt er dus voor dat een mechanisch proces tot stilstand komt. Vaslopers hebben daardoor vaak grotere gevolgen. Vastlopers komen in de praktijk vaak voor bij tweetakt-bromfietsen. Vooral wanneer de motoren zijn opgevoerd en hoge toeren draaien. De smering en koeling van deze motoren is op een gegeven moment onvoldoende.

De viscositeit van smeermiddelen gaat achteruit naar mate de smering onder hoge temperaturen komt te staan. Hierdoor werkt het smeermiddel niet goed meer en kan een vastloper ontstaan. Bovendien zorgen hoge temperaturen er voor dat er ook meer koeling moet worden toegepast. Als dit niet wordt gedaan is het schadelijke effect dus dubbel: de viscositeit van het smeermiddel gaat achteruit en de koeling is minder. De kans op een vastloper is dan zeer groot. Daarom is het belangrijk dat een machine of motor altijd van de juiste smeermiddelen wordt voorzien en dat men het smeerschema, als dat aanwezig is, nauwgezet volgt.

Wat is zelfontbranding in de motortechniek?

Zelfontbranding is een verschijnsel dat onder andere voorkomt in de motortechniek. In de motortechniek heeft men het over zelfontbranding als een brandstof spontaan tot ontbranding komt. Daarbij is de zelfontbrandingstemperatuur van groot belang.  Deze temperatuur is de temperatuur waarop een stof tot ontbranding komt. De manier en het moment waarop zelfontbranding ontstaat is dus afhankelijk van de toestand waarin de brandstof zich bevindt. De optimale toestand waarop een brandstof tot zelfontbranding kan komen kan doormiddel van een verbrandingsmotor tot stand worden gebracht.

Dieselmotor en zelfontbranding

Een dieselmotor is een veelgebruikte verbrandingsmotor in onder andere auto’s en schepen. Het principe waarop een dieselmotor werkt is in 1892 door de Duitse werktuigbouwkundige Rudolf Diesel bedacht. Een dieselmotor maakt gebruik van de zelfontbranding van dieselbrandstof. De diesel wordt in de dieselmotor onder hoge druk samengeperst.  Daarbij loopt de temperatuur van de diesel zo hoog op dat de diesel tot zelfontbranding komt. Een dieselmotor is een zuigermotor.

Tijdens de compressieslag van de zuiger wordt de lucht gecomprimeerd.  Daarna wordt de diesel in de motor gespoten. De samengeperste diesel en lucht komen spontaan tot zelfontbranding.  Daardoor maakt de zuiger de arbeidsslag. De zuiger brengt de zuigerstang in beweging. De zuigerstang drijft de krukas aan zodat het voertuig in beweging wordt gebracht. Een dieselmotor bestaat uit een zware constructie omdat een dieselmotor de brandstof onder een veel grotere druk samenperst dan bijvoorbeeld de benzine wordt samengeperst in een mengselmotor of Ottomotor.

Cetaangetal

De zelfontbrandbaarheid is voor diesel van groot belang. Daarom wordt de kwaliteit van diesel ook wel aangeduid met een getal waarmee de zelfontbrandbaarheid van het dieselmengsel duidelijk wordt. Dit getal is het cetaangetal. Het dieselmengsel wordt bij het bepalen van het cetaangetal vergeleken met de koolwaterstof hexadecaan. Hoe hoger het cetaangetal hoe sneller de diesel tot zelfontbranding komt. Een hoog cetaangetal maakt duidelijk dat het om een goede dieselkwaliteit gaat.

Mengselmotor of Ottomotor

Voor een dieselmotor is zelfontbranding van brandstof gewenst. Daarvoor is veel druk nodig die wordt veroorzaakt in een dieselmotor. In mengselmotoren kan men een dergelijke druk niet realiseren. Een mengselmotor of Ottomotor is minder stevig geconstrueerd dan een dieselmotor. Bij mengselmotoren maakt men gebruik van een andere brandstof. In een mengselmotor maakt men gebruik van brandstoffen zoals benzine of lpg.

Het benzinemengsel of de lpg in mengselmotoren wordt niet zo sterk gecomprimeerd als bij dieselmotoren. Daarnaast mag benzine of lpg niet spontaan tot ontbranding komen. Men zegt ook wel dat benzine klopvast moet zijn. De klopvastheid van benzine wordt ook wel verduidelijkt met een octaangetal. Diesel heeft dus een cetaangetal en benzine heeft een octaangetal. Diesel moet tot zelfontbranding komen en benzine juist niet.

Benzine moet uiteraard ook tot ontbranding komen anders ontstaat er te weinig druk in de mengselmotor. Benzine komt niet spontaan tot ontbranding maar wordt tot ontbranding gebracht doormiddel van vonken van bougies. Mengselmotoren hebben dus bougies. Een dieselmotor heeft geen bougies omdat het dieselmengsel tot zelfontbranding komt.

Hoe werkt een LPG installatie?

LPG is een brandstof die gebruikt kan worden voor mengselmotoren. Dit zijn motoren die over het algemeen worden gebruikt voor benzine. Met wat aanpassingen kan men een benzinemotor echter ook gebruiken voor LPG. Daarvoor moet men een LPG installatie aanbrengen. Er zijn in de loop der tijd verschillende LPG installaties ontwikkeld. Hieronder zijn de G1, G2 en de G3 installatie beschreven.

Werking van G1 installatie
De eerste generatie-lpg-installaties bestonden uit een gastank die ergens achter in het voertuig werd aangebracht. Soms was het mogelijk om de gastank in de plaats van de benzinetank aan te brengen. Vanaf deze gastank werd een leiding aangebracht naar het motorcompartiment. Op de leiding was een verdamper aangesloten met een mengstuk op of onder de carburateur. De verdamper zorgde er voor dat de LPG vloeistof werd omgezet tot een gasmengsel.

Om een vloeistof te verdampen tot gas heeft men warmte nodig. deze warmte wordt uit de omgeving onttrokken. Daarom is de verdamper aangesloten op een koelsysteem van de motor. De warmte van de motor zorgt er voor dat de LPG in de verdamper wordt opgewarmd. De verdamper regelt ook de druk van het gas. Dit gebeurd aan de hand van de druk in het inlaatspruitstuk. Er is hierbij sprake van een zogenoemd deelvacuüm dat er voor zorgd dat de het verdampte LPG samen met lucht de motor wordt ingezogen.

Het dashboard van de auto is voorzien van een ingebouwde keuzeschakelaar waarmee de bestuurde van de auto kan kiezen of hij op LPG of benzine wil rijden. Deze keuzeschakelaar bedient twee elektromagnetische ventielen in de LPG-leiding en benzineleidingen naar de motor. Dit is de werking van een eerste generatie LPG installatie. Dit wordt ook wel de G1 installatie genoemd.

Werking van G2 LPG installatie
Na de eerste generatie-lpg-installaties werden de tweedegeneratie-lpg-systemen ontwikkeld. Deze tweedegeneratie-lpg-systemen worden ook wel aangeduid met G2 installaties. Deze installatie kan een gas-venturi-systeem of een dampgas-injectiesysteem zijn. De gastoevoer van deze installaties wordt geregeld door een computer. Deze computer zorgt er voor dat G2 installaties schoner zijn dan de G1 installatie. De overige componenten van de installatie kunnen gelijk zijn aan de hieronder genoemde G3 installaties. Desondanks voldoet het voertuig met een G2 installatie niet aan de ECE94-12-emissie-eisen of is deze installatie niet getest bij een erkende keuringsinstantie voor LPG installaties. Daardoor geniet de eigenaar van een auto met een G2 installatie niet de fiscale voordelen die een eigenaar van een G3 installatie wel heeft.

Werking van G3 LPG installatie
Na de tweedegerneratie-lpg-installaties volgde de derdegeneratie-autogasinstallaties. Deze derde generaties worden G3-installaties genoemd. Er zijn verschillende soorten G3 LPG installaties die worden ingebouwd in auto’s. Bij deze installaties wordt gebruik gemaakt van een electronic control unit. Deze electronic control unit is een boordcomputer die de aansturingstijden berekend voor de benzine-injectoren. Deze tijden worden door de boordcomputer omgerekend naar de stuurtijden voor de gasinjectoren. Dit systeem zorgt er voor dat er heel weinig vermogen verloren gaat. Dat zorgt er voor dat er een optimaal rendement wordt gerealiseerd. Via de wegenbelasting ontvangen eigenaren van een auto met een G3 installatie fiscale voordelen.

Wat is LPG brandstof?

LPG is een brandstof die voor auto’s kan worden gebruikt. De afkorting LPG staat voor Liquefied Petroleum Gas. Als men de Engelse omschrijving ‘Liquefied Petroleum Gas’ in het Nederland vertaald dan is LPG vloeibaar petroleum gas. Over het algemeen vertaald men LPG in Nederland en België met autogas. In feite is LPG een mengsel van propaan (C3H8) en butaan (C4H10). Deze twee gassen worden afhankelijk van de buitentemperatuur in een bepaalde verhouding gemengd. De brandstof LPG heeft een aantal gunstige eigenschappen ten opzichte van benzine en diesel. Men kan LPG echter niet in elke auto als brandstof gebruiken. In de volgende alinea is hier meer informatie over weergegeven

LPG niet voor elke motor
LPG is een brandstof die wordt gebruikt in een mengselmotor oftewel een Ottomotor. Dit zijn verbrandingsmotoren waarbij de menging van de brandstof en de lucht plaatsvindt vóór de compressie in tegenstelling tot de dieselmotor. In feite kan men een benzinemotor gebruiken voor LPG. Echter kan men LPG niet zonder aanpassing in de benzinemotor brengen. Daarvoor moet men een LPG installatie aanbrengen.

LPG installaties
Er zijn verschillende LPG installaties. De eerste variant worden ook wel de generatie-lpg-installaties genoemd oftewel G1 installaties. Deze bevatten een gastank met een brandstofleiding naar de motor. Daarop zijn een verdamper met een mengstuk aangesloten. Na verloop van tijd voerde men de tweede generatie LPG installaties in. Deze tweede generatie oftewel G2 installatie kan gas-venturi-systeem of een dampgas-injectiesysteem zijn en bevat een computer die de gastoevoer regelt.

Derde generatie LPG-installaties worden 3 installaties genoemd en zijn nog moderner. Deze G3 installaties bevatten een boordcomputer die de aansturingstijden berekend voor de benzine-injectoren voor de motor. Deze aansturingstijden worden door de boordcomputer omgerekend naar stuurtijden voor de gasinjectoren. De G3 installaties werken daardoor nog efficiënter dan de G1 en G2 installatie.

Wat is het verschil tussen benzine en diesel

Diesel en benzine zijn brandstoffen die worden gebruikt in verbrandingsmotoren. Bij een benzinepomp zijn benzine en diesel de meest voorkomende brandstofmengsels die men kan verkrijgen. Beide brandstoffen zijn koolwaterstofmengels toch kan men geen diesel gebruiken in een benzinemotor en geen benzine in een dieselmotor. Dit zijn namelijk twee verschillende verbrandingsmotoren.

Verschillende verbrandingsmotoren
Een dieselmotor verschilt van een benzinemotor of Ottomotor. Het verschil zit voornamelijk in de manier waarop de brandstof tot ontsteking wordt gebracht. Deze ontsteking is nodig om druk te creëren in de motor zodat de zuiger naar beneden gedrukt kan worden en de zuigerstang de rechtlijnige beweging van de zuiger om kan zetten in een draaiende beweging van de krukas.

Benzinemotoren zijn voorzien van een ontstekingsmechanisme in de vorm van bougies. Deze bougies ontsteken met een vonk het benzinemengsel zodat de gewenste druk ontstaat op de zuiger. Dieselmotoren hebben een dergelijk ontstekingsmechanisme niet omdat het dieselmengsel tot zelfontbranding komt. Dit houdt in dat diesel door de druk of beter gezegd door de compressie tot ontbranding komt. Daarbij dient er uiteraard wel zuurstof aanwezig te zijn.

Octaangetal en cetaangetal
Het dieselmengsel is een ander brandstofmengsel dan het benzinemengsel omdat diesel tot zelfontbranding moet kunnen komen in een dieselmotor. De zelfontbrandbaarheid van diesel wordt aangegeven met het cetaangetal. Het cetaangetal is een referentiegetal waarbij het dieselmengsel wordt vergeleken met hexadecaan. Als het dieselmengsel net zo snel tot zelfontbranding komt als hexadecaan dan krijgt het dieselmengsel een cetaangetal van 100. Meestal heeft diesel een cetaangetal van 50.

Bij benzine gebruikt men het octaangetal om de klopvastheid van het brandstofmengsel aan te duiden. Ook hierbij wordt gebruik gemaakt van referentievloeistoffen. Het gaat inderdaad om meerdere vloeistoffen. Terwijl het dieselmengsel met één vloeistofmengsel (hexadecaan) wordt vergeleken, wordt benzine vergeleken met het makkelijk ontbrandbare n-heptaan en het moeilijk ontbrandbare iso-octaan (2,2,4-trimethylpentaan). De klopvastheid van n-heptaan wordt hierbij op 0 vastgesteld en die van iso-octaan op 100. Binnen deze uitersten wordt uiteindelijk het octaangetal bepaald van het benzinemengsel.

Wat is diesel of dieselolie?

Diesel wordt ook wel dieselolie genoemd. Het is een product dat van aardolie wordt gemaakt en dient als brandstof voor dieselmotoren. Het stofidentificatienummer, UN-nummer of VN-nummer is 1202. De naam diesel is afgeleid van de uitvinder van de dieselmotor, dat was namelijk Rudolf Diesel.

Men kan gasolie onderverdelen in laagzwavelige en hoogzwavelige gasolie.  Deze indeling gebruikt men als aanduiding voor het Parts per million (ppm) zwavel dat aanwezig is in de gasolie. Men gebruikt de naam diesel voor laagzwavelige gasolie. Naast gasolie kan men ook uit steenkool diesel produceren. Men verkrijgt diesel uit steenkool doormiddel van het Fischer-Tropschproces.

Hoe komt diesel tot ontbranding
Diesel is een brandstof die vanzelf tot ontbranding komt als er druk wordt uitgeoefend op de stof en er zuurstof aanwezig is. Deze factoren zijn ook aanwezig in de verbrandingsruimte in dieselmotoren op het moment dat men de diesel in de motor inspuit. Het is belangrijk dat het dieselmengsel op het juiste moment tijdens de slagen van de cilinder tot ontbranding komt anders gaat op den duur de motor stuk. Het moment van ontbranding heeft te maken met het dieselmengsel.

Cetaangetal
Diesel is een brandstof die doormiddel van zelfontbranding druk kan uitoefenen op een cilinder. De mate van de zelfontbranding wordt aangegeven in een cetaangetal. Dit getal geeft aan wat de kwaliteit is van de dieselbrandstof. Een laag cetaangetal maakt duidelijk dat de dieselbrandstof traag tot zelfontbranding komt en een hoof cetaangetal maakt duidelijk dat het dieselmengsel zeer snel tot zelfontbranding zal komen.  Als het mengsel geheel niet tot zelfontbranding komt is het cetaangetal zo laag dat het brandstofmengsel geheel niet geschikt is voor de motor.

Er zijn verschillende soorten diesel net zoals er ook verschillende soorten benzine zijn. De verschillende soorten zijn afhankelijk van de herkomst, het cetaangetal en de viscositeit (vloeibaarheid). Normale diesel heeft een cetaangetal van rond de 50. Dit is diesel die over het algemeen als brandstof wordt gebruikt voor voertuigen in het wegverkeer en landbouwverkeer. Er is echter ook biodiesel die geheel of gedeeltelijk is gemaakt van plantaardige olie of van dierlijke vetten. Deze diesel heeft een cetaangetal van 70 tot 100.

Verschil tussen diesel en benzine
Benzine en diesel zijn beide koolwaterstofmengels die worden gebruikt in verbrandingsmotoren. Deze brandstofmengsels komen echter op een verschillende manier tot ontsteking. Dat is de kern van het verschil tussen diesel en benzine. Benzine wordt gebruikt als brandstofmengsel voor een benzinemotor of Ottomotor. Deze brandstof komt tot ontsteking door een vonk van een bougie.

Bij dieselmotoren wordt een dergelijk ontstekingsmechanisme niet gebruikt en ontbrand de brandstof doormiddel van druk/ compressie en de aanwezigheid van zuurstof. Er is bij diesel dus sprake van zelfontbranding. Bij diesel wordt gebruik gemaakt van een cetaangetal om de zelfontbrandbaarheid aan te duiden van het mengsel terwijl bij benzine gebruik wordt gemaakt van een octaangetal om de klopvastheid mee aan te duiden.

Wat is een benzinemotor of mengselmotor?

Een benzinemotor is een verbrandingsmotor. Deze motor verricht mechanische arbeid door het verbranden van de brandstof benzine. De meeste benzinemotoren bevatten cilinders met zuigers. Motoren die zuigers bevatten worden ook wel zuigermotoren genoemd. Het aantal zuigers verschilt per type zuigermotor. Er zijn zuigermotoren die volgens het tweetaktprincipe werken en er zijn zuigermotoren die bijvoorbeeld werken op een viertaktprincipe. De laatste wordt ook wel de ottomotor genoemd naar de ontwerper Nikolaus Otto die deze motor in 1876 uitvond. Naast de hiervoorgenoemde motoren zijn er ook wankelmotoren. Deze motoren werken over het algemeen ook op benzine.

Mengselmotoren
Vrijwel alle benzinemotoren zijn mengselmotoren. Op een aantal oude motoren na zijn tegenwoordig alle mengselmotoren die worden geproduceerd bedoelt voor het verbranden van benzine. Om deze reden worden benzinemotoren ook wel mengselmotoren genoemd en andersom. De meeste benzinemotoren kunnen naast benzine ook op andere brandstoffen werken. Hierbij kan gedacht worden aan lpg, waterstof en ethanol. Hiervoor moeten echter wel een aantal aanpassingen worden aangebracht.

Het brandstofmengsel dat deze verbrandingsmotor bevat wordt in de cilinder gebracht. De bobine levert de bougie een hoogspanning waardoor deze gaat vonken. De vonk brengt het brandstofmengsel tot ontsteking waardoor een soort explosie ontstaat. Deze explosie zorgt voor druk. Deze druk brengt de zuiger in de cilinder naar beneden. De zuiger brengt de krukas in beweging.

Wat is een zuigermotor en welke zuigermotoren worden gebruikt in de techniek?

Zuigermotoren zijn motoren die één of meerdere zuigers bevatten. Deze zuigers zijn geplaatst in cilinders en zetten druk om in een draaiende beweging. Dit gebeurd door bijvoorbeeld een krukas in beweging te brengen. Er zijn verschillende zuigermotoren die in de techniek worden gebruikt. Zo bestaan er tweetaktmotoren die bijvoorbeeld worden gebruikt voor brommers, scooters en grote schepen. Daarnaast bestaan er viertaktmotoren. Deze motoren worden ook wel een ottomotor genoemd en veel toegepast in autotechniek en automotive. Ook een Stirlingmotor bevat een zuiger die doormiddel van het verwarmen en afkoelen van lucht in beweging wordt gebracht. Sommige motoren die zuigers bevatten worden ingedeeld op basis van de vorm waarin de cilinders ten opzichte van elkaar zijn geplaatst. Een aantal voorbeelden hiervan zijn de boxermotor, lijnmotor, V-motor, de U-motor, de W-motor en de stermotor. Daarover hieronder meer.

Boxermotor: flat twin, flat four en flat six
Boxermotoren zijn verbrandingsmotoren met een uniek vorm. De motor ziet er uit als een soort box. De cilinderparen van deze motoren zijn bijna recht tegenover elkaar geplaatst. Dit zorgt er voor dat de boxermotor niet hoog is. het zwaartepunt van het voertuig waarin de boxermotor is geplaatst wordt daardoor lager. Dit kan zorgen voor betere rijeigenschappen. Ook is de motor in een nagenoeg perfecte balans. De krachten van de zuigers heffen elkaar op omdat ze tegenover elkaar liggen. Er bestaan verschillende boxermotoren. Zo zijn er twee cilinder boxermotoren die in het Engels ook wel boxertwin of flat twin worden genoemd. Daarnaast zijn er ook viercilinderboxermotoren die flat four worden genoemd. Een zescilinderboxermotor draagt de naam flat six. De Engelse term ‘flat’ geeft aan dat het om een platte motor gaat dit in tegenstelling tot onderstaande motorvarianten.

Lijnmotor
Een lijnmotor is een verbrandingsmotor waarbij de cilinders naast elkaar of achter elkaar in één lijn met elkaar staan. Er ontstaat hierdoor één rij of lijn met cilinders.

V-motor
V-motoren zijn verbrandingsmotoren waarbij de cilinders geplaats zijn in een V-vorm ten opzichte van elkaar. Hierbij zijn twee rijen van cilinders aanwezig die in een V-vorm aan de onderkant bij elkaar komen bij de krukas. Deze motoren worden gebruikt in voertuigen en vliegtuigen waarbij er weinig ruimte beschikbaar is. De V-positie van de cilinders zorgt er voor dat er minder ruimte nodig is voor de motor dan bijvoorbeeld het geval is bij een boxermotor en een lijnmotor. Deze motoren worden onder andere gebruikt in auto’s en motorfietsen.

U-motor
De U-motor lijkt op een V-motor omdat er twee rijen van cilinders aanwezig zijn. Alleen wordt hierbij gebruik gemaakt van twee krukassen. In feite bestaat een U-motor uit twee lijnmotoren die zijn samengevoegd en onderling aan elkaar zijn bevestigd. De U-motor wordt in de praktijk nauwelijks gebruikt. Meestal kiest men voor de eerder genoemde V-motor.

W-motor
De W-motor is een verbrandingsmotor die zijn naam ook ontleent aan de vorm waarin de cilinders ten opzichte van elkaar zijn gepositioneerd.  Dit is een ‘W’ vorm. Er wordt hierbij gebruik gemaakt van drie rijen cilinders. Toch bestaan er ook W-motoren met twee rijen en met vier cilinderrijen. Een W-motor met twee rijen cilinders lijkt op een V-motor. Echter heeft de W-motor in dit geval één krukas per rij cilinders. De V-motor bevat slechts één krukas. Deze W-motorvariant wordt onder andere gebruikt voor speciale racemotorfietsen.

Stermotor een zuigermotor
Een bijzondere vorm van een zuigermotor is de stermotor. Deze zuigermotor wordt ook wel radiaalmotor genoemd. De stermotor bevat meerdere cilinders die in een stervorm of cirkelvorm geplaatst zijn rondom een krukas. Stermotoren of radiaalmotoren werden veel gebruikt voor propellervliegtuigen.  De gehele motor draait hierbij om de stilstaande krukas. De stermotor heeft voor vliegtuigen een belangrijk voordeel. Het is namelijk een compacte motor. In plaats van motoren waarbij de cilinders achter elkaar staan heeft de stermotor de cilinders in een stervorm om de krukas staan. De motor is hierdoor compact. De omvang van stermotoren kan echter verschillen. Er zijn stermotoren die drie cilinders bevatten maar er zijn ook stermotoren die vijf cilinders bevatten. Zelfs stermotoren van zeven cilinders komen voor. Wanneer het aantal cilinders nog verder wordt uitgebreid kiest men er voor om de cilinders in twee rijen achter elkaar te plaatsen.

Cilinders in zuigermotoren
De cilinders zijn een belangrijk onderdeel van de zuigermotoren. In cilinders bevinden zich zuigers die in beweging gebracht worden door druk. Hierdoor brengen de zuigers een krukas in beweging, behalve bij stermotoren die draaien om de krukas. Hoe groter de inhoud van de cilinder hoe meer druk geleverd zou kunnen worden. Motoren van kleine modelbouwvliegtuigen hebben een beperkte cilinderinhoud van bijvoorbeeld enkele cc. Grote scheepsdieselmotoren kunnen echter een cilinderinhoud hebben van honderden liters. Over het algemeen leveren grotere cilinders een groter rendement. Kleinere cilinders hebben echter over het algemeen een groter specifiek vermogen.

Wat is een viertaktmotor of ottomotor en hoe werkt deze motor?

Tegenwoordig zijn veel auto’s nog voorzien van een verbrandingsmotor. Een verbrandingsmotor verband brandstoffen en zet deze om in bewegingsenergie oftewel mechanische energie. Hiervoor worden meestal fossiele brandstoffen gebruikt. Deze zijn verwerkt in benzine en diesel. Deze brandstoffen wordt gebruikt om een motor in beweging te krijgen. Een veelgebruikte motor waarbij dit proces plaatsvind is de viertakt-ottomotor. Deze motor word in ongeveer tachtig procent van alle personenauto’s toegepast.

Wat is een viertaktmotor of ottomotor?
Ottomotor of viertaktmotor is een verschillende benaming voor het dezelfde motor. Deze motor werd uitgevonden in 1876 door Nikolaus Otto. Hij bedacht de viertaktmengselmotor omdat hij deze motor had bedacht werd de motor ook wel Ottomotor genoemd. De viertaktmotor werd later dat jaar door Wilhelm Maybach verbeterd. Aan het einde van het jaar 1876 werd de viertaktmotor in grote aantallen geproduceerd.

De viertaktmotor is een verbrandingsmotor en bevat zuigers. Deze zuigers worden in beweging gebracht door de verbranding van brandstof. De brandstof die voor een viertaktmotor kan worden gebruikt is divers. Een veelgebruikte brandstof is benzine, daarnaast wordt ook gebruik gemaakt van aardgas of LPG. De viertaktmotor word tegenwoordig in bijna alle auto’s toegepast.

Hoe werkt een viertaktmotor?
Hiervoor werd aangegeven dat een viertaktmotor zuigers bevat. Deze zuigers worden in beweging gebracht door de verbranding van een brandstofmengsel. De zuiger word door deze verbranding naar beneden gestuwd. Omdat de zuigers bevestigd zijn aan een krukas wordt deze ook in beweging gebracht. De zuiger in de viertaktmotor brengt tijdens de zogenoemde arbeidsslag de krukas in beweging en zorgt er voor dat deze as twee omwentelingen maakt. Er word bij een viertaktmotor gebruik gemaakt van verschillende ‘slagen’ die door de zuiger worden gemaakt. Deze zogenoemde slagen zijn in de volgende alinea behandeld.

Slagen van een viertaktverbrandingsmotor
Bij een viertaktmotor maken de cilinders elk vier slagen. Daar is de naam viertaktmotor ook van afgeleid. De slagen van deze motor zijn als volgt:

  • Inlaatslag. Dit is de eerste slag die door de zuiger word gemaakt. De uitlaatklep is afgesloten en de zuiger zakt naar beneden. Hierdoor ontstaat een aanzuigkracht. Door deze zuigkracht word een lucht-brandstofmengsel aangetrokken via de inlaatklep in de cilinder.
  • Compressieslag. Dit is de tweede slag die word gemaakt door de zuiger. Hierbij komt de zuiger doormiddel van de krukas weer naar boven. Daarbij drukt de zuiger het brandstofmengsel samen. Dit wordt ook wel compressie genoemd. Vandaar de naam compressieslag.
  • Arbeidsslag. Dit is de derde slag die door de zuiger wordt gemaakt. De zuiger bevind zich op zijn hoogste niveau in de cilinder. Het brandstofmengel, dat in de vorige slag werd gecomprimeerd, word ontstoken door een bougievonk. Door deze verbranding ontstaat een ontploffing en word druk gerealiseerd. De zuiger wordt met deze druk naar beneden gebracht en brengt de krukas in beweging. De krukas maakt twee omwentelingen.
  • Uitlaatslag. De vierde slag die door de zuiger wordt gemaakt is de uitlaatslag. Het verbrande brandstofmengsel moet ook weer de cilinder verlaten. Hiervoor zorgt de uitlaatslag. De zuiger bevind zich aan het begin van deze slag onderaan de cilinder. De zuiger komt weer omhoog door de draaibeweging van krukas en stuwt daardoor de verbrandingsgassen door een uitlaatklep uit de cilinder. De uitlaatslag is de laatste slag die wordt gemaakt in een viertaktmotor. Daarna begint het proces weer opnieuw.

De viertaktmotor zorgt er voor dat de krukas in beweging wordt gebracht. Hierdoor kan een voertuig worden aangedreven. De viertaktmotor moet hiervoor wel voortdurend worden voorzien van nieuwe brandstof. Deze brandstof zorgt er tijdens de verbranding voor dat CO2 wordt uitgestoten. Deze CO2 uitstoot is schadelijk voor het milieu. Daarom word in de autotechniek gekeken naar alternatieve brandstoffen en milieuvriendelijker motoren. Ondanks dat wordt de viertaktmotor nog veel toegepast binnen de automotive.