Wat is een plasmasnijmachine en wat is plasmasnijden?

Plasmasnijden is een bewerkingstechniek die onder andere in de metaalbewerking wordt toegepast. Plasmasnijden is een proces dat met name wordt gebruikt voor het snijden van vormen uit plaatmateriaal. Dit gebeurd doormiddel van een plasmasnijmachine. De plasmasnijmachine maakt gebruik van plasma. Dit plasma wordt met een elektrische vlamboog opgewekt. Het plasmasnijden komt voort uit het plasmalassen, dit lasproces wordt ook wel het TIG lassen genoemd. Het plasmasnijden ontstond rond 1963. Het plasmasnijden zorgde voor fraaiere resultaten dan het snijdbranden dat tot die tijd veelvuldig werd gebruikt voor het snijden van metaal. Bij plasmasnijden zijn de snedes gladder en nauwkeuriger dan de snedes die ontstaan bij snijbranden. Er ontstaan bovendien geen staalsplinters tijdens het plasmasnijden.

Een plasmasnijmachine is een ander apparaat dan een lasersnijmachine. Als men met een plasmasnijmachine een snede maakt dan is de bovenkant afgerond. Hierdoor zal men voor het afwerken nog nabewerking moeten uitvoeren. Dit is niet het geval bij producten die door een lasersnijmachine zijn gemaakt.

Waaruit bestaat een plasmasnijmachine?
Een plasmasnijmachine bestaat uit een aantal delen. Allereerst krijgt de machine haar elektrische voeding uit een stroombron. Daarnaast is er een massakabel en een stroomtoevoerdraad. Verder is er een persleiding in de machine geplaatst. Er wordt gebruik gemaakt van een inert gas of perslucht. De vlamboog wordt ontstoken door een hoogfrequent ontsteking. De machine bevat een koperen geïsoleerd en watergekoeld mondstuk. Hierin is een wolfraamelektrode geplaatst. Moderne plasmasnijders zijn uitgerust met een computersysteem waardoor men doormiddel van programmering de plasmasnijder de gewenste bewerking kan laten uitvoeren. Plasmasnijders die uitgerust zijn met een dergelijk systeem noemt men ook wel CNC- plasmasnijmachines. Hierbij staat de afkorting CNC voor Computer Numerical Control. Uiteraard is de gehele plasmasnijmachine in een stevig stalen frame gebouwd dat meestal voorzien is van een snijdtafel. Het mondstuk met de elektrode beweegt zich boven de plaat die op de snijdtafel licht. Daarvoor is het mondstuk meestal aan een beweegbare arm gemonteerd. De positionering van dit mondstuk gebeurd door het CNC-programma.

Hoe werkt een plasmasnijmachine?
Nadat de operator de plasmasnijmachine heeft geprogrammeerd in het CNC-programma wordt er via een persleiding een inert gas of perslucht met een hoge snelheid door het mondstuk gespoten. Tussen de wolfraamelektrode en het werkstuk wordt doormiddel van elektrische stroom een vlamboog opgewerkt. Hierbij wordt gebruik gemaakt van een hoogfrequent ontsteking.

Door deze vlamboog wordt een deel van het gas omgezet in plasma. Dit plasma wordt zeer heet, wel 30.000 °C en wordt door het mondstuk in een staal veranderd. De hoge temperatuur zorgt er voor dat het metaal waarop de elektrode is geplaatst wordt gesmolten. De perslucht en de hoge temperatuur zorgen er voor dat de metaaldeeltjes die gesmolten zijn worden weggeblazen. Zo ontstaat een snede in het metaal. Dit kan met een behoorlijke snelheid uitgevoerd worden.

Het mondstuk waar de elektrode in zit moet natuurlijk tijdens het proces niet gaan smelten. Daarom is het mondstuk geïsoleerd en wordt het mondstuk bovendien met water gekoeld.

Wat is een burijn of graveersteker?

Een burijn is een stuk handgereedschap waarmee men doormiddel van een stekende beweging kan graveren. Om die reden wordt een burijn ook wel een graveersteker genoemd. Een burijn wordt zowel in de metaaltechniek gebruikt als in de houtbewerking.

Burijn in de metaaltechniek
Een burijn wordt in de metaaltechniek gebruikt voor het aanbrengen van graveringen. Een burijn die voor graveringen wordt gebruikt lijkt op een naald. Een graveur is iemand die een gravering aanbrengt in bijvoorbeeld koper. Hij of zij duwt de burijn voorzichtig in het metaal en steekt vervolgens kleine spaantjes van het materiaal weg. Zo kunnen dunne ondiepe gleuven worden gemaakt. De producten die een graveur met een burijn maakt zijn bijvoorbeeld kopergravures en droge naald-etsen. Dit zijn sierobjecten. Tegenwoordig wordt er vooral veel machinaal gegraveerd,

Burijn in de houtbewerking
Als men het heeft over een Burijn in de houtbewerking dan bedoelt men een beitel met een V-vormige punt. Bij een burijn zit aan het uiteinde een V-vormige punt, de hoek van de punt lijkt op een vouw. Dit is het geslepen deel van het snijvlak en bevindt zich aan de buitenkant. Een burijn met een V-vorm wordt ook wel een guts genoemd. deze wordt door een houtsnijder gebruikt voor het snijden van houtsnedes en houtgravures . Er zijn verschillende soorten burijnen. Het verschil zit in het formaat en de snijhoek er zijn bijvoorbeeld snijhoeken van 45°, 60° en 90°. Ook het lemmet (metalen deel met snijkant) kan een gebogen of rechte vorm hebben.

Wat is een lintzaag en waar wordt een lintzaag voor gebruikt?

Een lintzaag is een machine die een zaag bevat. Deze zaag is lintvormig en is eindloos. Dit houdt in dat het zaaglint in een cirkel aan elkaar bevestigd is. De totale lengte van het zaagblad is enkele meters. Deze lintzaag is om twee wielen van de lintzaagmachine heen gespannen. Het onderste wiel van de lintzaagmachine wordt zo aangedreven dat het zaaglint van boven naar beneden wordt getrokken. Het zaaglint draait dus naar beneden.

Een lintzaag bevat ook een zaagtafel waarop men het werkstuk kan leggen. Het werkstuk kan dan voorzichtig tegen de lintzaag aan worden geduwd. Omdat de lintzaag naar beneden beweegt wordt het werkstuk tegen het zaagtafelblad aangeduwd. Eventueel maakt men gebruik van een geleideliniaal of mal om de zaag op de juiste manier door het werkstuk heen te begeleiden.

Tegenwoordig worden lintzagen over het algemeen elektrisch aandreven met een elektromotor. Vroeger werden lintzagen ook wel met waterkracht aangedreven door gebruik te maken van een waterrad. De kracht van het water bracht het waterrad dan in beweging en zorgde er voor dat de lintzaag werd aangedreven. Op die manier werden boomstammen tot planken verzaagd.

Toepassing van lintzaag
Een lintzaag heeft net als een cirkelzaag een unieke vorm. Deze vorm maakt de lintzaag zeer geschikt om lange zaagsneden te maken. daardoor kunnen materialen met een grote dikte worden doorgesneden. Verder is een lintzaag vanwege het dunne zaagblad geschikt om bochten te maken in een werkstuk. Hoe smalle het zaagblad van de lintzaag hoe scherper de bocht in het werkstuk gemaakt kan worden.

Er zijn verschillende soorten lintzagen ontwikkelt. Er zijn bijvoorbeeld lintzagen die geschikt zijn voor het verzagen van hout. Daarnaast zijn er lintzagen voor metaal of kunststof. Hoe harder het materiaal is hoe lager de zaagsnelheid is. Bij het zagen van metaal dient men koelvloeistof toe om er voor te zorgen dat het zaagblad niet te heet wordt. Daardoor wordt voorkomen dat het zaagblad gaat vervormen tijdens het zagen.

Onderhoud van de lintzaag
Lintzagen moeten goed onderhouden worden. Als een lintzaag bot is kan het zaaglint kapot breken met een flinke kracht. Daardoor kan materiaal worden beschadigd maar kan bovendien ook iemand ernstig gewond raken. Bij grote lintzagen kan een zaaglint met de hand worden geslepen. Men kan er ook voor kiezen om de zaaglinten van de wielen aft te halen en geheel te vervangen.

De wielen van de lintzaag zijn over het algemeen voorzien van een rubberen rand. Dit dient ter bescherming van het zaagblad. Als men het zaaglint gaat vervangen moet het bovenste wiel van de lintzaagmachine weer opnieuw worden gesteld. Dan wordt het bovenste zaagwiel in hetzelfde vlak gebracht als het onderste wiel. Dit zorgt er voor dat de zaagspanning optimaal blijft en het zaaglint niet van de wielen af gaat draaien.

Wat is metaalbewerking en welke metaalbewerkingsprocessen zijn er?

Metaalbewerking is een algemene benaming die wordt gebruikt voor het bewerken van metalen. Sinds de ontdekking van metaal in ertsen heeft de mensheid verschillende periodes gehad die zich kenmerkten door een bepaald metaal of metaalbewerking. Zo kende men de bronstijd en de ijzertijd.

Tegenwoordig wordt in metaalbewerking gebruik gemaakt van uiteenlopende metalen en metaallegeringen. In de metaaltechniek wordt vooral staal toegepast. Dit is ijzer met een klein percentage koolstof. Daarnaast wordt ook aluminium gebruikt en worden legeringen gemaakt zoals roestvast staal (RVS).

De doelstelling van metaalbewerking is het maken van individuele onderdelen, halffabricaten,  assemblages of complete constructies. Metaalbewerking is een zeer brede term die onder de metaaltechniek valt. Doormiddel van het bewerken van metalen kunnen uiteenlopende werkstukken en constructies worden vervaardigd. Hierbij kan gedacht worden aan:

  • Bruggen
  • Schepen
  • Jachten
  • Machineframes
  • Balustrades
  • Puiconstructies
  • Kunstwerken

Ook sieraden en horloges worden van metalen gemaakt. Hiervoor worden meestal edelmetalen gebruikt die zeer nauwkeurig worden gewerkt. Daarnaast wordt in de machinebouw en de medische sector ook gebruik gemaakt van metalen in verschillende soorten, maatvoeringen en toleranties. De metaalbewerking is daardoor een zeer brede sector waarin grote en kleine en kleine producten worden gemaakt voor verschillende sectoren: van juwelier tot de bouwbranche.

Metaalbewerkingsprocessen
In de bronstijd, ongeveer 3000 tot 800 voor Christus, maakten mensen vooral gebruik brons. Hiervoor had men kopererts en tinerts nodig. Koper en tin werden samengesmolten en vervolgens in de gewenste vorm gegoten. Brons is echter niet smeedbaar. De ijzertijd zorgde voor een grote verandering. Deze periode begon in Europa vanaf ongeveer 800 voor Christus. IJzer is in tegenstelling tot brons wel smeedbaar en daarnaast kan het ook nog gegoten worden in vormen zoals bij gietijzer en gietstaal gebeurd.

Door de komt van ijzer nam het aantal bewerkingsprocessen in de metaalbewerking toe. Er ontstonden smederijen waarbij een smid ijzer doormiddel van vlamovens op temperatuur bracht en vervolgens met een hamer op een aanbeeld in de gewenste vorm sloeg. Hierdoor ontstond smeedijzer en smeedstaal.

Tegenwoordig worden vooral machines gebruikt voor het bewerken van metaal. Hierbij maakt men onder andere gebruik van werktuigmachines. De moderne metaalbewerkingsprocessen zijn zeer divers en worden wel in twee groepen verdeeld:

  • De verspanende metaalbewerking. Deze metaalbewerking omvat verschillende metaalbewerkingsprocessen waarbij het basismateriaal doormiddel van verspaning in de juiste vorm wordt gebracht. Er worden hierbij kleine spaantjes van het materiaal verwijdert tot de juiste vorm en afmeting is ontstaan. Voorbeelden van verspanende bewerkingstechnieken zijn: boren, slijpen, draaien, frezen, schaven en zagen.
  • De niet-verspanende metaalbewerking. Binnen deze groep zijn uiteenlopende metaalbewerkingsprocessen aanwezig. Dit kunnen plaatbewerkingstechnieken zijn zoals: walsen, zetten en snijden. Ook smeden en gieten behoren tot de niet-verspanende metaalbewerking. Lassen is een hele bekende vorm van niet-verspanende metaalbewerking en wordt veel in de metaalbewerking toegepast. Doormiddel van lassen worden een niet-uitneembare verbinding gemaakt tussen metalen (of kunststoffen). Lassen behoort tot verbindingsprocessen in de metaalbewerking. Hier valt ook solderen onder.

Wat is het verschil tussen een verspanende bewerking en een niet-verspanende bewerking?

Vormgevingstechnieken zijn technieken die worden gebruikt om een basismateriaal te vervormen tot een gewenst product. Het hiervoor benodigde basismateriaal kan uit verschillende grondstoffen bestaan, bijvoorbeeld uit hout, kunststof, glas, steen  of metalen. Vervormingstechnieken worden ingedeeld in verschillende bewerkingen. Een voorbeeld van deze indeling is de scheiding tussen verspanende bewerkingen en niet-verspanende bewerkingen. Vooral in de metaalbranche/ metaaltechniek wordt deze onderverdeling gehanteerd. Hieronder zijn de verschillen tussen deze vormgevingstechnieken beschreven.

Verspanende bewerking
Verspanende bewerkingen worden veel toegepast in de werktuigbouwkunde. Hiervoor wordt gebruik gemaakt van verschillende werktuigmachines. Werktuigmachines die verspanende bewerkingen uitvoeren hebben als gemeenschappelijk kenmerk dat er kleine deeltjes van het werkstuk of uitgangsmateriaal worden weggenomen. Voorbeelden van verspanende bewerkingen zijn draaien, boren, frezen en zagen. Ook slijpen en schaven kunnen tot de verspanende bewerkingen worden gerekend. Bij deze bewerkingen worden kleine deeltjes van het werkstuk verwijdert om het werkstuk de gewenste vorm of afmeting te geven. Deze kleine deeltjes hebben meestal de vorm van een spaantje of spanen, daarom wordt de bewerking van deze werktuigmachines ook wel verspanende bewerking genoemd. Verspanende bewerkingen worden vooral uitgevoerd in de werktuigbouwkunde bij bijvoorbeeld het maken van matrijzen of onderdelen van machines zoals lagers.

Niet-verspanende bewerking
Een niet-verspanende bewerking is een bewerking of techniek die wordt gebruikt om uitgangsmateriaal of basismateriaal in een bepaalde vorm te brengen zonder dat daarbij spanen van het werkstuk worden verwijdert. Dit is het grote verschil met een verspanende bewerking of een verspanende techniek.

Lassen
Lassen is een voorbeeld van een niet-verspanende bewerking die veel in de metaaltechniek wordt toegepast. In de praktijk worden verschillende lasmethodes gebruikt om werkstukken te maken. Doormiddel van lassen kan een lasser een niet-uitneembare verbinding maken tussen metalen. Ook kunststoffen kunnen gelast worden. Voor het maken van een goede las moeten verschillende factoren op elkaar worden afgestemd. Allereerst moet het materiaal goed lasbaar zijn. Daarnaast moet men de juiste lasmethode kiezen en het juiste toevoegmateriaal. In de meeste gevallen hoeft de lasser deze aspecten niet zelf uit te zoeken en kan hij of zij navraag doen bij een lasbaas of lastechnicus. Een lastechnicus is iemand met een opleiding International Welding Specialist (IWT) of een opleiding Middelbaar Lastechnicus (MLT). Deze werknemers hebben veel ervaring op het gebied van lassen en alle kwaliteitsaspecten en theoretische aspecten die daarbij aan de orde komen.

Verder wordt bij veel laswerk een lasmethodebeschrijving (LMB) gegeven of een Welding Procedure Specification (WPS). Hierin staat informatie die de lasser moet gebruiken om de las vakkundig te maken conform de Europese of Internationale voorschriften. De lasmethodebeschrijving / Welding Procedure Specification is gekoppeld aan de lasmethodekwalificatie van het desbetreffende bedrijf waar de lasser werkzaam is.

Gieten
Sommige metalen en kunststoffen kan men ook in de juiste vorm gieten. Hierbij komen ook geen spanen aan de orde daarom is gieten een voorbeeld van een niet-verspanende bewerking. Gieten wordt tegenwoordig veel toegepast bij kunststoffen en kan op verschillende manieren worden gedaan. Een voorbeeld hiervan is spuitgieten. Ook extruderen wordt bij kunststoffen regelmatig als vormgevingstechniek toegepast. Naast kunststof wordt ook ijzer en staal in vormen gegoten. Hierdoor ontstaat gietijzer en gietstaal. Kenmerkend voor het gietproces is dat het kunststof granulaat, ijzer of staal eerst in vloeibare vorm moet worden gebracht voordat het gegoten of gespoten kan worden. Over het algemeen moet daarvoor het materiaal verhit worden. Het verhitte materiaal wordt door gieten of spuitgieten in de juiste vorm gebracht. Na afkoeling behoudt het materiaal zijn nieuwe vorm.

Overige niet-verspanende bewerkingen
Voor het plastisch vervormen van metalen platen kunnen ook verschillende niet-verspanende bewerkingen worden uitgevoerd. Hierbij kan men denken aan buigen, walsen, zetten en kanten. Ook dieptrekken, persbuigen, wikkelbuigen en explosief vervormen zijn vervormingstechnieken. Als men gaten wil maken in plaat kan men ook ponsen of snijden. Doormiddel van lasers kan men uitgangsmateriaal in een bepaalde vorm brengen.

Eroderen en vonken
Doormiddel van eroderen en vonken kunnen metalen ook vervormd worden. Hierbij wordt gebruik gemaakt van elektrodes. Het werkstuk vormt een elektrode en daarnaast is er een vormgevende elektrode. Tussen de werkstukelektrode en de vormgevende elektrode wordt doormiddel van een machine een kortsluiting gemaakt. Hierbij ontstaan vonken tussen de elektrodes. Deze vonken zorgen er voor dat er deeltjes van het uitgangsmateriaal worden verwijdert. Deze deeltjes smelten tijdens het processen en lossen op in de hitte van de vonken. Vervolgens worden de restjes van de metaaldeeltjes verwijdert door het diëlektricum. Dit is een speciale olie die niet geleid. In de metaaltechniek wordt eroderen en vonken ingedeeld in de verspanende bewerkingen. Er zijn echter ook metaalbedrijven die eroderen juist een niet-verspanende bewerking noemen.

Wat is ponsnibbelen en wat is een ponsnibbelmachine?

Ponsnibbelen is techniek die wordt gebruikt in de metaalbewerking. Binnen de metaalbewerking wordt het pons-nibbelproces met name gebruikt in de plaatbewerking. Bij het ponsnibbelen maakt men gebruik van een stempel. Het stempel heeft een specifieke vorm en is in de ponsnibbel machine geplaatst door de plaatbewerker of machinebankwerker die de machine bedient.

Stempels in een ponsnibbelmachine
Stempels worden gebruikt om een bepaalde vorm in het metaal te ponsen. Het kleine stempel wordt iedere keer opnieuw in een plaat geduwd waardoor de gewenste vorm wordt uitgestempelt in de plaat. Dit stempelen is in feite het maken van uitsparingen doormiddel van snijden met een bepaalde druk. Stempelen is een eenvoudige plaatbewerkingstechniek waarmee eenvoudige en complexere vormen uit metaal kunnen worden gehaald.

CNC ponsnibbelmachine
Ponsnibbelen kan men doen op een CNC ponsnibbelmachine, deze machine is computergestuurd. Hierdoor kunnen relatief snel vormen uit platen worden gestempeld. De productiesnelheid van een CNC ponsnibbelmachine is groot. Voordat men echter gaat produceren is het belangrijk dat de machine precies ‘weet’ waar de gaten en andere uitsparingen moeten worden aangebracht in de plaat. Een CNC ponsnibbelmachine bepaald de positie aan de hand van technische tekeningen. Deze computertekeningen (CAD) worden ingelezen door de machine. Volgens worden de gaten uitgestanst.

Nabewerking
Door het ponsen kunnen scherpe randen ontstaan bij de uitsparingen. Deze scherpe randen kunnen worden verwijderd doormiddel van trommelen of borstelen. Door deze nabewerking is het product minder scherp en kunnen de producten goed met de handen worden beetgepakt zonder dat er kans is op snijwonden. Over het algemeen is het ondanks de nabewerking toch nog verstandig om handschoenen te dragen wanneer men metalen platen bewerkt.