Wat is een installatieautomaat?

Een installatieautomaat is een beveiligingssysteem voor elektrische bedrading tegen beschadiging die kan ontstaan door te hoge elektrische stromen ten gevolge van overbelasting of kortsluiting. Een installatieautomaat wordt ook wel een zekeringsautomaat genoemd of maximumschakelaar. Als te hoge elektrische stromen worden gemeten zal het elektrische circuit door de installatieautomaat worden onderbroken. Op die manier wordt niet alleen de installatie beschermd maar worden ook de bewoners en gebruikers van het gebouw beschermd tegen calamiteiten die ontstaan door kortsluiting zoals brand.

Hoe werkt een installatieautomaat?
Wanneer er sprake is van overbelasting of kortsluiting zal de installatieautomaat het elektrische circuit onderbreken. De manier waarop de installatieautomaat in werking treed verschilt echter. Als er sprake is van een hoge stroomstoot die bijvoorbeeld ontstaat bij kortsluiting dan zal de installatieautomaat via een elektromagneet in werking treden en de elektrische spanning op het elektriciteitsnet uitschakelen. Als er sprake is van een overbelasting van een bepaalde groep dan vindt uitschakeling via de installatieautomaat plaats doormiddel van een bimetaal. Het grote voordeel van een installatieautomaat ten opzichte van de klassieke porseleinen smeltpatronen is dat schakelaar van de installatieautomaat weer eenvoudig omgezet kan worden als de oorzaak van het probleem is opgelost.

Waar is de installatieautomaat te vinden?
Een installatieautomaat is geplaatst in een groepenkast of meterkast van woningen. Samen met de aardlekschakelaar vormt de installatieautomaat de kern van de beveiliging van de elektrotechnische installatie. De meeste installatieautomaten die tegenwoordig worden aangebracht zijn voor vaste montage. De elektromonteur bevestigd de installatieautomaat aan de achterwand van de installatiekast. Dit gebeurd in de praktijk vaak door middel van een DIN rail. Deze vaste installatieautomaten worden ook wel sockelautomaten genoemd.

Verschillende soorten installatieautomaten
Installatieautomaten zijn er in verschillende varianten. Hieronder volgt een opsomming van de meest gebruikte en de meest bekende installatieautomaten:

  • 1P+N-automaat is eenpolig met afschakelbare nulleider die alleen in de fasepool een set overstroombeveiligingen bevat. De 1P+N-automaat is één van de meest toegepaste installatieautomaten in woningen
  •  2P-automaat. De aanduiding 2P maakt duidelijk dat het om een tweepolige automaat gaat. Elke pool bevat een set overstroombeveiligingen.
  • 3P-automaat. Deze installatieautomaat bevat drie polen met drie sets overstroombeveiligingen.
  • 3P+N-automaat. Deze bevat net als de 3P-automaat drie sets overstroombeveiligingen. Daarnaast bevat de 3P+N-automaat een afschakelbare nulleider.

Deze installatieautomaten hebben verschillende uitschakelkarakteristieken. Deze worden in de volgende alinea nader toegelicht.

Uitschakelkarakteristieken van installatieautomaten
De uitschakelkarakteristieken zijn aangepast aan de specifieke kenmerken van een bepaalde elektrische installatie. Zo moeten sommige installatieautomaten juist wel of juist niet in werking treden bij een piekstroom van een bepaalde hoogte. De uitschakelkarakteristieken hebben allemaal een letter. Hieronder zijn de uitschakelkarakteristieken puntsgewijs genoteerd:

  • B-karakteristiek. Dit is de meest toegepaste automaat bij huisinstallaties.
  • C-karakteristiek. Deze installatieautomaten worden gebruikt bij wat grotere (in)schakelstromen zoals motoren.
  • D-karakteristiek. Installatieautomaten met een D-karakteristiek worden voor bijvoorbeeld transformatoren gebruikt.
  • Overige uitschakelkarakteristieken. Met name voor industriële toepassingen zijn er nog andere uitschakelkarakteristieken dan de hiervoor genoemde. Deze uitschakelkarakteristieken worden speciaal voor de beveiliging van bijvoorbeeld installaties met halfgeleiders aangebracht.

Wat is een aardlekautomaat?

Een aardlekautomaat is een elektrotechnisch beveiligingssysteem waarmee een elektrische installatie wordt beveiligd tegen een hoge lekstroom, kortsluiting en overbelasting van het elektriciteitsnet. Een aardlekautomaat wordt ook wel afgekort met alamat. Net als een aardlekschakelaar behoort ook de aardlekautomaat tot de beveiliging van een elektriciteitsnet. Er bestaan overeenkomsten tussen aardlekautomaten en aardlekschakelaars maar ook verschillen.

Aardlekautomaat of aardlekschakelaar
De aardlekautomaat is niet exact hetzelfde als een aardlekschakelaar omdat de aardlekautomaat naast een aardlekschakelaar ook een zekeringsautomaat of installatieautomaat bevat. Daardoor is de aardlekautomaat een beveiliging die niet alleen reageert op lekstroom maar ook op overstroom die ontstaat door overbelasting. Daarnaast reageert de aardlekautomaat op kortsluiting. Als men een aardlekschakelaar heeft geplaatst zal men ook een zekeringautomaat of installatieautomaat moeten aanbrengen in de meterkast of groepenkast. De aardlekautomaat bevat deze beveiligingen in één compacte behuizing.

Voordeel van een aardlekautomaat
Een aardlekautomaat heeft voordelen en nadelen ten opzichte van een systeem met een aardlekschakelaar en een zekeringautomaat. Het belangrijkste voordeel van een aardlekautomaat is dat deze beveiliging bij een te hoge lekstroom alleen de groep uitschakelt waar de elektrische storing zich bevind. De overige groepen blijven operationeel. Een aardlekschakelaar schakelt bij een elektrische storing alle groepen uit waarop de aardlekschakelaar is aangesloten. Vanwege het feit dat de aardlekautomaat alleen de groep uitschakelt waarin de storing of lekstroom is waargenomen, kan men de storing ook makkelijker lokaliseren. Het is namelijk direct zichtbaar in welke groep de storing zit.

Nadeeldeel van een aardlekautomaat
Een belangrijk nadeel van de aardlekautomaat is dat deze om verschillende redenen de groep spanningsvrij maakt. Er kan bijvoorbeeld sprake zijn van lekstroom maar ook van kortsluiting of een overbelasting van het elektriciteitsnet. De oorzaak van de verstoring in het elektriciteitsnet is daardoor vaak onduidelijk waardoor nader onderzoek moet worden uitgevoerd. Wel is duidelijk in welke groep het defect is opgetreden. In sommige gevallen kan een storing in een installatie met een aardlekautomaat langer onopgemerkt blijven.

Wat is een aardlekschakelaar?

Een aardlekschakelaar is een schakelaar die automatisch in werking treed en een elektrische installatie spanningsloos maakt, wanneer er een lekstroom gemeten wordt van een bepaalde grootte. Normaal gesproken is er sprake van een stroomkring in een elektrische installatie. Er is een fasedraad en een nuldraad. De fasedraad voert de elektrische spanning aan richting bijvoorbeeld de verlichting en via de nul gaat de niet verbruikte elektrische stroom weer retour.

Wanneer deze stroomkring wordt onderbroken door bijvoorbeeld een slechte isolatie van de elektrische bedrading ontstaat er lekstroom. Als de lekstroom een bepaalde grootte heeft zal de aardlekschakelaar in werking treden en er voor zorgen dat er geen elektrische spanning meer staat op het elektriciteitsnet. Veel woningen en utiliteitscomplexen hebben een aardlekschakelaar in de meterkast of groepenkast. Sommige van deze gebouwen bevatten zelfs meerdere aardlekschakelaars.

Synoniemen voor aardlekschakelaar
De aardlekschakelaar wordt ook wel afgekort met ALS. Er zijn verschillende benamingen die worden gebruikt voor dit beveiligingssysteem. Zo gebruikt men ook wel de term verliesstroomschakelaar omdat de schakelaar in werking treed als een bepaalde hoeveelheid stroom verloren gaat in een elektriciteitsnet. Andere woorden voor de aardlekschakelaar zijn aardwachter of differentieelschakelaar.

Uitvinder van de aardlekschakelaar
In 1903 werd door het bedrijf Siemens-Schuckert een patent aangevraagd op een aardlekschakelaar. Dit Duitse elektrotechnische bedrijf gaf deze uitvinding de naam Summenstromschaltung zur Erdschlußerfassung. De uitvinding werd gepatenteerd onder DRP-Nr. 160.069. De heer K. Kuhlmann die werkzaam was bij die Allgemeine Elektricitäts-Gesellschaft (AEG) had een methode beschreven om aardlekstroom in het Berlijnse netwerk te meten. Voor de huidige techniek die gebruikt wordt voor de aardlekschakelaar werd in 1908 door de Amerikaan Lloyd Nicholsen een octrooi aangevraagd. Dit octrooi werd in 1910 toegekend.

Doel van de aardlekschakelaar
Een aardlekschakelaar is een belangrijk onderdeel van een veilige elektrische installatie. Daarom komen aardlekschakelaars veel in huisinstallaties voor. Het belangrijkste doel van een aardlekschakelaar is de veiligheid van het elektriciteitsnetwerk in een woning, utiliteitscomplex of ander gebouw te bevorderen. Een goed werkende aardlekschakelaar kan bij lekstroom grote problemen voorkomen door het elektriciteitsnet spanningsvrij te maken. Op die manier kan de aardlekschakelaar mensen bescherming bieden tegen elektrocutie. Daarnaast kan de aardlekschakelaar voor voorkomen dat er brand ontstaat bij optredende lekstromen naar aarde.

Zoals in de inleiding kort werd benoemd meet een enkelfasige aardlekschakelaar de elektrische stroom die een installatie via de fase opneemt en de hoeveelheid stroom die via de nul terugkomt. Als er sprake is van een verschilstroom zou deze stroom in theorie door de veiligheidsaarde terug moeten lopen. Dit is echter niet het geval bij onder andere de volgende situaties:

  • Niet-geaarde apparaten en toestellen.
  • Toestellen en apparaten die aangesloten zijn op een niet-geaarde wandcontactdoos.

In bovengenoemde gevallen zou bijvoorbeeld door een isolatiedefect of een beschadiging van de elektriciteitsdraad een levensgevaarlijke situatie ontstaan wanneer een mens of dier in contact komt met het gedeelte van de elektrische installatie die onder spanning staat maar onvoldoende is geïsoleerd. In dat geval gaat de stroomdoorgang door het lichaam van het mens of het dier. Een aardlekschakelaar zorgt er echter voor dat een lekstroom wordt gemeten en dat de elektrische installatie spanningsvrij wordt gemaakt zodat gevaarlijke situaties zoals elektrocutie en brand (door een slecht werkende elektrische isolatie) kunnen worden voorkomen.

Een aardlekschakelaar zal echter alleen in werking treden wanneer de stroom naar de aarde weglekt. Als een mens of dier niet geaard contact maakt met zowel de nul- als de fasedraad in een elektrische installatie zal de aardlekschakelaar niet in werking treden. Alleen wanneer de elektrische stroom naar aarde weglekt, zal de aardlekschakelaar de stroomkring onderbreken.

Werking van de aardlekschakelaar
Hiervoor is al aardig wat beschreven over de werking van de aardlekschakelaar. In deze alinea gaan we iets dieper in op de werking van deze schakelaar. Men heeft het hierbij over lekstroom. Dit kun je beschouwen als een soort lekkage in de stroomkring. Als er een bepaalde hoeveelheid stroom in een stroomkring wordt aangevoerd zal er ook een bepaalde hoeveelheid stroom weer terug komen. De hoeveelheid stroom die de elektrische installatie in gaat kan echter groter zijn dan de hoeveelheid stroom die een elektrische installatie weer uitgaat. In dat geval is er sprake van een lekstroom.

Deze lekstroom wordt ook wel een foutstroom of verliesstroom genoemd vandaar de benaming verliesstroomschakelaar. De foutstroom kan ontstaan wanneer de behuizing van bijvoorbeeld een elektrisch toestel onder spanning is komen te staan doordat de isolatie van de elektrische bedrading in het toestel is beschadigd of door een ander defect.

Als het toestel echter geaard is dan is er een aardedraad bevestigd aan de metalen behuizing van het toestel. In dat geval loopt de lekstroom via de aardedraad door de geaarde stekker via het geaarde stopcontact richting de aardlekschakelaar. De aardlekschakelaar zal bij een overschrijding van de aanspreekstroom in werking treden. In dat geval worden de aangesloten groepen spanningsloos gemaakt. Dit is echter het geval bij een compleet geaard systeem, dit bestaat uit:

  • Een geaarde machine of apparaat dat voorzien is van een aardestekker.
  • Een wandcontactdoos die geaard is met een aardedraad richting de aardlekschakelaar.

Indien bovenstaande onderdelen van de installatie niet aanwezig zijn en er sprake is van bijvoorbeeld een ongeaard toestel dat onder spanning staat zal elektrische stroom wanneer deze in contact komt met het lichaam wegvloeien naar de aarde. Wanneer dat gebeurd zal de aardlekschakelaar ook in werking treden en het elektriciteitsnet spanningsvrij maken voordat de situatie levensbedreigend wordt.

Aardlekschakelaar testen
Bovenstaande informatie is natuurlijk alleen van toepassing wanneer de aardlekschakelaar ook daadwerkelijk werkt. Het zou dramatisch zijn wanneer men de werking van een aardlekschakelaar alleen zou kunnen testen door een daadwerkelijk isolatiedefect in een elektriciteitsnet daarom heeft men een testknop ontwikkeld. Deze testknop is in de groepenkast aanwezig die en creëert kunstmatig een kleine lekstroom. Daardoor kan de aardlekschakelaar een verschil in de aangevoerde stroom en de retourstroom meten en het elektriciteitsnet spanningsvrij maken. Het is goed om de aardlekschakelaar periodiek te testen zeker wanneer men meerdere ongeaarde wandcontractdozen in huis heeft.

Meggeren solatieweerstand meten
Lekstroom ontstaat dikwijls doordat de weerstand van de isolatie in een elektrotechnisch systeem te laag is. Deze weerstand kan worden gemeten door een ervaren elektromonteur met een isolatieweerstandsmeter. Deze isolatieweerstandsmeters zijn door verschillende merken ontwikkeld en op de markt gebracht. Het bekendste merk op dit gebied is in Nederland het merk Megger. Dit bedrijf maakt echter meerdere meetinstrumenten voor de elektrotechniek. Ondanks dat wordt het meten van de isolatieweerstand in de elektrotechniek vaak in het vakjargon meggeren genoemd. Als uit dit meggeren blijkt dat de isolatieweerstand in een bepaald elektrotechnisch systeem voldoende is dan is de weerstand van de isolatie in ieder geval voldoende hoog voor de hoeveelheid elektrische stroom die in een systeem wordt getransporteerd. Tijdens het meggeren kan echter ook worden geconstateerd dat dit niet het geval is. Dan kan een elektromonteur tijdig de delen die onvoldoende geïsoleerd zijn vervangen. De aardlekschakelaar zal dan niet in werking treden.

Wat is meggeren in elektrotechniek?

Meggeren is een werkwoord dat is afgeleid van het meten van de weerstand die isolatiemateriaal biedt tegen elektrische stroom met behulp van een isolatieweerstandsmeter (van het merk Megger). Doormiddel van meggeren kan een bevoegd elektromonteur controleren of de weerstand nog voldoende hoog is. Als isolatiemateriaal te weinig weerstand biedt tegen elektrische stroom kan (een gedeelte van) de installatie onder elektrische spanning komen te staan.

Dit kan zeer gevaarlijk zijn en kortsluiting veroorzaken. Ook kunnen mensen een elektrische schok krijgen wanneer ze in contact komen met isolatiemateriaal dat onvoldoende weerstand biedt tegen elektrische stroom. Daarom is meggeren belangrijk, men kan doormiddel van dit meggeren tijdig een indruk krijgen van de isolatieweerstand in een elektrische installatie zodat ongelukken kunnen worden voorkomen.

Megger en meggeren
Het woord meggeren is afgeleid van het woord Megger. Dit is een benaming die wordt gebruikt voor een isolatieweerstandsmeter van het merk Megger. In het vakjargon van elektromonteurs gebruikt men voor deze isolatieweerstandsmeters de benaming Megger. Dat is niet verwonderlijk want het bedrijf Megger Group Ltd produceert al sinds 1889 isolatiemeters voor de elektrotechniek. Ook maakt het bedrijf verschillende andere meetinstrumenten voor de elektrotechniek en telecom. De zogenaamde Megger is ontworpen als isolatieweerstandsmeter voor het meten van weerstanden in het megaohmbereik. Men noemt daarom een megger ook wel een megaohmmeter.

Hoe werkt een megger?
Met dit apparaat wordt gelijkspanning aangelegd op een elektrische installatie. De megger werkt op batterijen en bevat ook een generator. Deze generator wekt een hoge meetspanning op van 500 volt of een nog hoger voltage. Naast de generator bevat daarnaast ook een zeer gevoelige stroommeter. Hiermee worden metingen verricht met een zeer grote nauwkeurigheid die zich in het bereik van microampères bevind. De megger meet alleen de weerstand van de isolatie tegen de elektrische spanning. Een megger wordt dus niet gebruikt om de weerstand tegen elektrische stroom in een installatie zelf te meten.

Meggeren door bevoegd elektromonteur
Het meggeren mag alleen worden gedaan door een bevoegde elektromonteur. In de NEN 3140 en de NEN 1010 staan de richtlijnen voor het verrichten van metingen voor de weerstand van isolatie die wordt gebruikt in elektrische installaties. Voor installaties met nominale spanning van 400/230 Volt is een weerstand van minimaal 500 kOhm vereist, dit kan men ook uitdrukken in 0,5 MOhm.

Wat is een megger of isolatieweerstandsmeter?

Een Megger is een benaming die wordt gebruikt voor een isolatieweerstandsmeter van het merk Megger. Dit merk maakt verschillende meetproducten die worden gebruikt in de elektrotechniek, telecom en industrie. Als een elektromonteur het heeft over een megger dan bedoelt hij een  isolatieweerstandsmeter. Deze werkt op batterijen en bevat een generator die een hoge meetspanning van ongeveer 500 volt of hoger opwekt.

Deze isolatieweerstandsmeter bevat daarnaast een zeer gevoelige stroommeter. Deze kan metingen verrichten tot een nauwkeurigheid in microampères. De isolatieweerstandsmeter of megger heeft een hoge meetspanning en de gevoelige stroommeter dit zorgt er voor dat dit meetinstrument beter in staat is om zeer hoge weerstanden te meten dan bijvoorbeeld een universeelmeter.

Een isolatieweerstandsmeter is ontworpen voor het meten van weerstanden in het megaohmbereik, daarom gebruikt men voor dit meetinstrument ook wel de benaming megaohmmeter. Men noemt deze ohmmeter in het vakjargon van elektromonteurs ook wel een Megger, alleen is dat de benaming van het gedeponeerd merk van de Megger Group Ltd. Dit bedrijf ontwikkelt en fabriceert sinds 1889 isolatiemeters

Waar worden isolatieweerstandsmeters voor gebruikt?
Isolatieweerstandsmeters zijn meetinstrumenten die door elektromonteurs en andere bevoegde technici worden gebruikt voor het meten van isolatieweerstanden. Men meet hierbij niet de weerstand in het elektrische circuit maar de weerstand van de isolatie. Als de weerstand van deze isolatie laag is dan kan elektrische stroom door de ze isolatie weglekken en zou men onder spanning kunnen komen te staan.

De isolatieweerstand moet zo hoog mogelijk zijn maar de elektrische weerstand in het circuit moet zo laag mogelijk zijn voor een veilige en goed functionerende elektrische installatie. Voor nieuwe installaties met een nominale spanning van 400/230 Volt dient de isolatieweerstand minimaal 500 kOhm zijn oftewel 0,5 MOhm. In de NEN 3140 en de NEN 1010 zijn de richtlijnen voor de metingen vastgelegd. Voor bestaande installaties is minimaal 1000 Ohm per Volt aan isolatieweerstand vereist.