Wat is het verschil tussen een verspanende bewerking en een niet-verspanende bewerking?

Vormgevingstechnieken zijn technieken die worden gebruikt om een basismateriaal te vervormen tot een gewenst product. Het hiervoor benodigde basismateriaal kan uit verschillende grondstoffen bestaan, bijvoorbeeld uit hout, kunststof, glas, steen  of metalen. Vervormingstechnieken worden ingedeeld in verschillende bewerkingen. Een voorbeeld van deze indeling is de scheiding tussen verspanende bewerkingen en niet-verspanende bewerkingen. Vooral in de metaalbranche/ metaaltechniek wordt deze onderverdeling gehanteerd. Hieronder zijn de verschillen tussen deze vormgevingstechnieken beschreven.

Verspanende bewerking
Verspanende bewerkingen worden veel toegepast in de werktuigbouwkunde. Hiervoor wordt gebruik gemaakt van verschillende werktuigmachines. Werktuigmachines die verspanende bewerkingen uitvoeren hebben als gemeenschappelijk kenmerk dat er kleine deeltjes van het werkstuk of uitgangsmateriaal worden weggenomen. Voorbeelden van verspanende bewerkingen zijn draaien, boren, frezen en zagen. Ook slijpen en schaven kunnen tot de verspanende bewerkingen worden gerekend. Bij deze bewerkingen worden kleine deeltjes van het werkstuk verwijdert om het werkstuk de gewenste vorm of afmeting te geven. Deze kleine deeltjes hebben meestal de vorm van een spaantje of spanen, daarom wordt de bewerking van deze werktuigmachines ook wel verspanende bewerking genoemd. Verspanende bewerkingen worden vooral uitgevoerd in de werktuigbouwkunde bij bijvoorbeeld het maken van matrijzen of onderdelen van machines zoals lagers.

Niet-verspanende bewerking
Een niet-verspanende bewerking is een bewerking of techniek die wordt gebruikt om uitgangsmateriaal of basismateriaal in een bepaalde vorm te brengen zonder dat daarbij spanen van het werkstuk worden verwijdert. Dit is het grote verschil met een verspanende bewerking of een verspanende techniek.

Lassen
Lassen is een voorbeeld van een niet-verspanende bewerking die veel in de metaaltechniek wordt toegepast. In de praktijk worden verschillende lasmethodes gebruikt om werkstukken te maken. Doormiddel van lassen kan een lasser een niet-uitneembare verbinding maken tussen metalen. Ook kunststoffen kunnen gelast worden. Voor het maken van een goede las moeten verschillende factoren op elkaar worden afgestemd. Allereerst moet het materiaal goed lasbaar zijn. Daarnaast moet men de juiste lasmethode kiezen en het juiste toevoegmateriaal. In de meeste gevallen hoeft de lasser deze aspecten niet zelf uit te zoeken en kan hij of zij navraag doen bij een lasbaas of lastechnicus. Een lastechnicus is iemand met een opleiding International Welding Specialist (IWT) of een opleiding Middelbaar Lastechnicus (MLT). Deze werknemers hebben veel ervaring op het gebied van lassen en alle kwaliteitsaspecten en theoretische aspecten die daarbij aan de orde komen.

Verder wordt bij veel laswerk een lasmethodebeschrijving (LMB) gegeven of een Welding Procedure Specification (WPS). Hierin staat informatie die de lasser moet gebruiken om de las vakkundig te maken conform de Europese of Internationale voorschriften. De lasmethodebeschrijving / Welding Procedure Specification is gekoppeld aan de lasmethodekwalificatie van het desbetreffende bedrijf waar de lasser werkzaam is.

Gieten
Sommige metalen en kunststoffen kan men ook in de juiste vorm gieten. Hierbij komen ook geen spanen aan de orde daarom is gieten een voorbeeld van een niet-verspanende bewerking. Gieten wordt tegenwoordig veel toegepast bij kunststoffen en kan op verschillende manieren worden gedaan. Een voorbeeld hiervan is spuitgieten. Ook extruderen wordt bij kunststoffen regelmatig als vormgevingstechniek toegepast. Naast kunststof wordt ook ijzer en staal in vormen gegoten. Hierdoor ontstaat gietijzer en gietstaal. Kenmerkend voor het gietproces is dat het kunststof granulaat, ijzer of staal eerst in vloeibare vorm moet worden gebracht voordat het gegoten of gespoten kan worden. Over het algemeen moet daarvoor het materiaal verhit worden. Het verhitte materiaal wordt door gieten of spuitgieten in de juiste vorm gebracht. Na afkoeling behoudt het materiaal zijn nieuwe vorm.

Overige niet-verspanende bewerkingen
Voor het plastisch vervormen van metalen platen kunnen ook verschillende niet-verspanende bewerkingen worden uitgevoerd. Hierbij kan men denken aan buigen, walsen, zetten en kanten. Ook dieptrekken, persbuigen, wikkelbuigen en explosief vervormen zijn vervormingstechnieken. Als men gaten wil maken in plaat kan men ook ponsen of snijden. Doormiddel van lasers kan men uitgangsmateriaal in een bepaalde vorm brengen.

Eroderen en vonken
Doormiddel van eroderen en vonken kunnen metalen ook vervormd worden. Hierbij wordt gebruik gemaakt van elektrodes. Het werkstuk vormt een elektrode en daarnaast is er een vormgevende elektrode. Tussen de werkstukelektrode en de vormgevende elektrode wordt doormiddel van een machine een kortsluiting gemaakt. Hierbij ontstaan vonken tussen de elektrodes. Deze vonken zorgen er voor dat er deeltjes van het uitgangsmateriaal worden verwijdert. Deze deeltjes smelten tijdens het processen en lossen op in de hitte van de vonken. Vervolgens worden de restjes van de metaaldeeltjes verwijdert door het diëlektricum. Dit is een speciale olie die niet geleid. In de metaaltechniek wordt eroderen en vonken ingedeeld in de verspanende bewerkingen. Er zijn echter ook metaalbedrijven die eroderen juist een niet-verspanende bewerking noemen.

Wat is elektronenbundellassen en waar wordt dit lasproces toegepast?

Elektronenbundellassen is een uniek lasproces waarbij gebruik wordt gemaakt van een bundel elektronen. Dit lasproces wordt ook wel afgekort met EBW. Deze afkorting staat voor het Engelse Electron Beam Welding. Het EBW lasproces is ontwikkelt in 1958 door de Duitse natuurkundige Karl-Heinz Steigerwald. Hij had in dat jaar de eerste praktische elektronenbundellasmachine ontworpen en gemaakt.

Hoe wordt elektronenbundellassen uitgevoerd?
Net als elk ander lasproces is ook bij elektronenbundellassen energie nodig. Deze energie wordt bij elektronenbundellassen aan het werkstuk toegevoegd door gebruik te maken van een bundel elektronen in een elektronenkanon. In het elektronenkanon wordt een bundel elektronen vrijgemaakt. De elektronen worden gefocusseerd en daarnaast worden ze versneld. De versnelling van de elektronen is enorm en gaat wel tot de helft van de snelheid van licht. De elektronensnelheid is daardoor 150.000 km per seconde. De elektronen worden door het elektronenkanon op het werkstuk gericht. Als voldoende vermogen wordt gebruikt zal het metaal plaatselijk op de smelttemperatuur worden gebracht en gaan smelten. Als er nog meer vermogen wordt toegevoegd kan het metaal zelfs gaan verdampen. Met elektronenbundellassen kunnen temperaturen worden behaald van 25.000 Kelvin.

Met de bundel elektronen wordt het werkstuk in bestookt. Elektronenbundellassen kan alleen in een vacuüm worden gedaan omdat een elektronenbundel in gas snel zal verstrooien. Dit is niet erg praktisch, daarom wordt elektronenbundellassen in de praktijk nauwelijks gebruikt. Voor het elektronenbundellassen zal een ruimte eerst vacuüm moeten worden gezogen.

Een belangrijk voordeel van deze lasmethode is dat de bundel elektronen goed kan worden gestuurd. In het vacuüm is geen zuurstof aanwezig. Hierdoor ontstaat geen nieuwe oxide op het metaal tijdens het lasproces. Daarnaast kan de aanwezige oxide doormiddel van het lasproces worden verdampt. Dit is vooral praktisch bij het lassen van aluminium. Bij aluminium is de oxidehuid namelijk een stevige beschermlaag die harder is dan het aluminium dat onder de oxidehuid aanwezig is.

Elektronenbundellassen is geschikt voor verschillende plaatdiktes. In werkstukken met dikke platen kunnen smalle lassen worden gemaakt met elektronenbundels. Zo kunnen in platen van 150 mm dik lasnaden worden aangebracht met een breedte van 5 mm. Hierbij wordt gebruik gemaakt van keyhole techniek net als bij laserlassen.

Waar wordt elektronenbundellassen voor gebruikt?
Met elektronenbundellassen kunnen hoogwaardige lassen worden gemaakt. Dit is een belangrijk voordeel van dit lasproces. Dit voordeel is in sommige gevallen belangrijker dan de praktische uitvoerbaarheid van het lasproces. Onder andere bij gasturbines en de vliegtuigbouw moeten zeer hoogwaardige lassen worden aangebracht op kritische onderdelen. Dit is ook het geval bij onderdelen zoals tandwielen en assen en verschillende soorten aandrijvingen. Deze werkstukken moeten gelast worden op een zeer nauwkeurig niveau. Daarom is elektronenbundellassen voor deze werkstukken wel interessant ondanks het feit dat een vacuümruimte gerealiseerd moet worden alvorens men gaat lassen.

Elektronenbundellassen is overigens ook geschikt voor het verbinden van verschillende metaalsoorten aan elkaar. Zo kan men met dit lasproces aluminium aan staal lassen en kan men brons ook aan staal lassen. Verder is het mogelijk om met elektronenbundellassen gewoon koolstofstaal aan roestvast staal te lassen.

De keuze voor een bepaald lasproces is beschreven in een lasmethodebeschrijving LMB of een Welding Procedure Specification WPS. Mochten er onduidelijkheden zijn over het gewenste lasproces dan is het verstandig of zelfs verplicht om een expert op lastechnisch gebied in te schakelen. Dit kan bijvoorbeeld een lasbaas zijn, een Middelbaar Lastechnicus MLT of een International Welding Specialist IWT.